# Bitcoin Price Update - Worth Of Bitcoin Bitcoin Faucet ...

Dragonchain Great Reddit Scaling Bake-Off Public Proposal

Dragonchain Great Reddit Scaling Bake-Off Public Proposal

Dragonchain Public Proposal TL;DR:

Dragonchain has demonstrated twice Reddit’s entire total daily volume (votes, comments, and posts per Reddit 2019 Year in Review) in a 24-hour demo on an operational network. Every single transaction on Dragonchain is decentralized immediately through 5 levels of Dragon Net, and then secured with combined proof on Bitcoin, Ethereum, Ethereum Classic, and Binance Chain, via Interchain. At the time, in January 2020, the entire cost of the demo was approximately $25K on a single system (transaction fees locked at $0.0001/txn). With current fees (lowest fee $0.0000025/txn), this would cost as little as $625.
Watch Joe walk through the entire proposal and answer questions on YouTube.
This proposal is also available on the Dragonchain blog.

Hello Reddit and Ethereum community!

I’m Joe Roets, Founder & CEO of Dragonchain. When the team and I first heard about The Great Reddit Scaling Bake-Off we were intrigued. We believe we have the solutions Reddit seeks for its community points system and we have them at scale.
For your consideration, we have submitted our proposal below. The team at Dragonchain and I welcome and look forward to your technical questions, philosophical feedback, and fair criticism, to build a scaling solution for Reddit that will empower its users. Because our architecture is unlike other blockchain platforms out there today, we expect to receive many questions while people try to grasp our project. I will answer all questions here in this thread on Reddit, and I've answered some questions in the stream on YouTube.
We have seen good discussions so far in the competition. We hope that Reddit’s scaling solution will emerge from The Great Reddit Scaling Bake-Off and that Reddit will have great success with the implementation.

Executive summary

Dragonchain is a robust open source hybrid blockchain platform that has proven to withstand the passing of time since our inception in 2014. We have continued to evolve to harness the scalability of private nodes, yet take full advantage of the security of public decentralized networks, like Ethereum. We have a live, operational, and fully functional Interchain network integrating Bitcoin, Ethereum, Ethereum Classic, and ~700 independent Dragonchain nodes. Every transaction is secured to Ethereum, Bitcoin, and Ethereum Classic. Transactions are immediately usable on chain, and the first decentralization is seen within 20 seconds on Dragon Net. Security increases further to public networks ETH, BTC, and ETC within 10 minutes to 2 hours. Smart contracts can be written in any executable language, offering full freedom to existing developers. We invite any developer to watch the demo, play with our SDK’s, review open source code, and to help us move forward. Dragonchain specializes in scalable loyalty & rewards solutions and has built a decentralized social network on chain, with very affordable transaction costs. This experience can be combined with the insights Reddit and the Ethereum community have gained in the past couple of months to roll out the solution at a rapid pace.

Response and PoC

In The Great Reddit Scaling Bake-Off post, Reddit has asked for a series of demonstrations, requirements, and other considerations. In this section, we will attempt to answer all of these requests.

Live Demo

A live proof of concept showing hundreds of thousands of transactions
On Jan 7, 2020, Dragonchain hosted a 24-hour live demonstration during which a quarter of a billion (250 million+) transactions executed fully on an operational network. Every single transaction on Dragonchain is decentralized immediately through 5 levels of Dragon Net, and then secured with combined proof on Bitcoin, Ethereum, Ethereum Classic, and Binance Chain, via Interchain. This means that every single transaction is secured by, and traceable to these networks. An attack on this system would require a simultaneous attack on all of the Interchained networks.
24 hours in 4 minutes (YouTube):
24 hours in 4 minutes
The demonstration was of a single business system, and any user is able to scale this further, by running multiple systems simultaneously. Our goals for the event were to demonstrate a consistent capacity greater than that of Visa over an extended time period.
Tooling to reproduce our demo is available here:
https://github.com/dragonchain/spirit-bomb

Source Code

Source code (for on & off-chain components as well tooling used for the PoC). The source code does not have to be shared publicly, but if Reddit decides to use a particular solution it will need to be shared with Reddit at some point.

Scaling

How it works & scales

Architectural Scaling

Dragonchain’s architecture attacks the scalability issue from multiple angles. Dragonchain is a hybrid blockchain platform, wherein every transaction is protected on a business node to the requirements of that business or purpose. A business node may be held completely private or may be exposed or replicated to any level of exposure desired.
Every node has its own blockchain and is independently scalable. Dragonchain established Context Based Verification as its consensus model. Every transaction is immediately usable on a trust basis, and in time is provable to an increasing level of decentralized consensus. A transaction will have a level of decentralization to independently owned and deployed Dragonchain nodes (~700 nodes) within seconds, and full decentralization to BTC and ETH within minutes or hours. Level 5 nodes (Interchain nodes) function to secure all transactions to public or otherwise external chains such as Bitcoin and Ethereum. These nodes scale the system by aggregating multiple blocks into a single Interchain transaction on a cadence. This timing is configurable based upon average fees for each respective chain. For detailed information about Dragonchain’s architecture, and Context Based Verification, please refer to the Dragonchain Architecture Document.

Economic Scaling

An interesting feature of Dragonchain’s network consensus is its economics and scarcity model. Since Dragon Net nodes (L2-L4) are independent staking nodes, deployment to cloud platforms would allow any of these nodes to scale to take on a large percentage of the verification work. This is great for scalability, but not good for the economy, because there is no scarcity, and pricing would develop a downward spiral and result in fewer verification nodes. For this reason, Dragonchain uses TIME as scarcity.
TIME is calculated as the number of Dragons held, multiplied by the number of days held. TIME influences the user’s access to features within the Dragonchain ecosystem. It takes into account both the Dragon balance and length of time each Dragon is held. TIME is staked by users against every verification node and dictates how much of the transaction fees are awarded to each participating node for every block.
TIME also dictates the transaction fee itself for the business node. TIME is staked against a business node to set a deterministic transaction fee level (see transaction fee table below in Cost section). This is very interesting in a discussion about scaling because it guarantees independence for business implementation. No matter how much traffic appears on the entire network, a business is guaranteed to not see an increased transaction fee rate.

Scaled Deployment

Dragonchain uses Docker and Kubernetes to allow the use of best practices traditional system scaling. Dragonchain offers managed nodes with an easy to use web based console interface. The user may also deploy a Dragonchain node within their own datacenter or favorite cloud platform. Users have deployed Dragonchain nodes on-prem on Amazon AWS, Google Cloud, MS Azure, and other hosting platforms around the world. Any executable code, anything you can write, can be written into a smart contract. This flexibility is what allows us to say that developers with no blockchain experience can use any code language to access the benefits of blockchain. Customers have used NodeJS, Python, Java, and even BASH shell script to write smart contracts on Dragonchain.
With Docker containers, we achieve better separation of concerns, faster deployment, higher reliability, and lower response times.
We chose Kubernetes for its self-healing features, ability to run multiple services on one server, and its large and thriving development community. It is resilient, scalable, and automated. OpenFaaS allows us to package smart contracts as Docker images for easy deployment.
Contract deployment time is now bounded only by the size of the Docker image being deployed but remains fast even for reasonably large images. We also take advantage of Docker’s flexibility and its ability to support any language that can run on x86 architecture. Any image, public or private, can be run as a smart contract using Dragonchain.

Flexibility in Scaling

Dragonchain’s architecture considers interoperability and integration as key features. From inception, we had a goal to increase adoption via integration with real business use cases and traditional systems.
We envision the ability for Reddit, in the future, to be able to integrate alternate content storage platforms or other financial services along with the token.
  • LBRY - To allow users to deploy content natively to LBRY
  • MakerDAO to allow users to lend small amounts backed by their Reddit community points.
  • STORJ/SIA to allow decentralized on chain storage of portions of content. These integrations or any other are relatively easy to integrate on Dragonchain with an Interchain implementation.

Cost

Cost estimates (on-chain and off-chain) For the purpose of this proposal, we assume that all transactions are on chain (posts, replies, and votes).
On the Dragonchain network, transaction costs are deterministic/predictable. By staking TIME on the business node (as described above) Reddit can reduce transaction costs to as low as $0.0000025 per transaction.
Dragonchain Fees Table

Getting Started

How to run it
Building on Dragonchain is simple and requires no blockchain experience. Spin up a business node (L1) in our managed environment (AWS), run it in your own cloud environment, or on-prem in your own datacenter. Clear documentation will walk you through the steps of spinning up your first Dragonchain Level 1 Business node.
Getting started is easy...
  1. Download Dragonchain’s dctl
  2. Input three commands into a terminal
  3. Build an image
  4. Run it
More information can be found in our Get started documents.

Architecture
Dragonchain is an open source hybrid platform. Through Dragon Net, each chain combines the power of a public blockchain (like Ethereum) with the privacy of a private blockchain.
Dragonchain organizes its network into five separate levels. A Level 1, or business node, is a totally private blockchain only accessible through the use of public/private keypairs. All business logic, including smart contracts, can be executed on this node directly and added to the chain.
After creating a block, the Level 1 business node broadcasts a version stripped of sensitive private data to Dragon Net. Three Level 2 Validating nodes validate the transaction based on guidelines determined from the business. A Level 3 Diversity node checks that the level 2 nodes are from a diverse array of locations. A Level 4 Notary node, hosted by a KYC partner, then signs the validation record received from the Level 3 node. The transaction hash is ledgered to the Level 5 public chain to take advantage of the hash power of massive public networks.
Dragon Net can be thought of as a “blockchain of blockchains”, where every level is a complete private blockchain. Because an L1 can send to multiple nodes on a single level, proof of existence is distributed among many places in the network. Eventually, proof of existence reaches level 5 and is published on a public network.

API Documentation

APIs (on chain & off)

SDK Source

Nobody’s Perfect

Known issues or tradeoffs
  • Dragonchain is open source and even though the platform is easy enough for developers to code in any language they are comfortable with, we do not have so large a developer community as Ethereum. We would like to see the Ethereum developer community (and any other communities) become familiar with our SDK’s, our solutions, and our platform, to unlock the full potential of our Ethereum Interchain. Long ago we decided to prioritize both Bitcoin and Ethereum Interchains. We envision an ecosystem that encompasses different projects to give developers the ability to take full advantage of all the opportunities blockchain offers to create decentralized solutions not only for Reddit but for all of our current platforms and systems. We believe that together we will take the adoption of blockchain further. We currently have additional Interchain with Ethereum Classic. We look forward to Interchain with other blockchains in the future. We invite all blockchains projects who believe in decentralization and security to Interchain with Dragonchain.
  • While we only have 700 nodes compared to 8,000 Ethereum and 10,000 Bitcoin nodes. We harness those 18,000 nodes to scale to extremely high levels of security. See Dragonchain metrics.
  • Some may consider the centralization of Dragonchain’s business nodes as an issue at first glance, however, the model is by design to protect business data. We do not consider this a drawback as these nodes can make any, none, or all data public. Depending upon the implementation, every subreddit could have control of its own business node, for potential business and enterprise offerings, bringing new alternative revenue streams to Reddit.

Costs and resources

Summary of cost & resource information for both on-chain & off-chain components used in the PoC, as well as cost & resource estimates for further scaling. If your PoC is not on mainnet, make note of any mainnet caveats (such as congestion issues).
Every transaction on the PoC system had a transaction fee of $0.0001 (one-hundredth of a cent USD). At 256MM transactions, the demo cost $25,600. With current operational fees, the same demonstration would cost $640 USD.
For the demonstration, to achieve throughput to mimic a worldwide payments network, we modeled several clients in AWS and 4-5 business nodes to handle the traffic. The business nodes were tuned to handle higher throughput by adjusting memory and machine footprint on AWS. This flexibility is valuable to implementing a system such as envisioned by Reddit. Given that Reddit’s daily traffic (posts, replies, and votes) is less than half that of our demo, we would expect that the entire Reddit system could be handled on 2-5 business nodes using right-sized containers on AWS or similar environments.
Verification was accomplished on the operational Dragon Net network with over 700 independently owned verification nodes running around the world at no cost to the business other than paid transaction fees.

Requirements

Scaling

This PoC should scale to the numbers below with minimal costs (both on & off-chain). There should also be a clear path to supporting hundreds of millions of users.
Over a 5 day period, your scaling PoC should be able to handle:
*100,000 point claims (minting & distributing points) *25,000 subscriptions *75,000 one-off points burning *100,000 transfers
During Dragonchain’s 24 hour demo, the above required numbers were reached within the first few minutes.
Reddit’s total activity is 9000% more than Ethereum’s total transaction level. Even if you do not include votes, it is still 700% more than Ethereum’s current volume. Dragonchain has demonstrated that it can handle 250 million transactions a day, and it’s architecture allows for multiple systems to work at that level simultaneously. In our PoC, we demonstrate double the full capacity of Reddit, and every transaction was proven all the way to Bitcoin and Ethereum.
Reddit Scaling on Ethereum

Decentralization

Solutions should not depend on any single third-party provider. We prefer solutions that do not depend on specific entities such as Reddit or another provider, and solutions with no single point of control or failure in off-chain components but recognize there are numerous trade-offs to consider
Dragonchain’s architecture calls for a hybrid approach. Private business nodes hold the sensitive data while the validation and verification of transactions for the business are decentralized within seconds and secured to public blockchains within 10 minutes to 2 hours. Nodes could potentially be controlled by owners of individual subreddits for more organic decentralization.
  • Billing is currently centralized - there is a path to federation and decentralization of a scaled billing solution.
  • Operational multi-cloud
  • Operational on-premises capabilities
  • Operational deployment to any datacenter
  • Over 700 independent Community Verification Nodes with proof of ownership
  • Operational Interchain (Interoperable to Bitcoin, Ethereum, and Ethereum Classic, open to more)

Usability Scaling solutions should have a simple end user experience.

Users shouldn't have to maintain any extra state/proofs, regularly monitor activity, keep track of extra keys, or sign anything other than their normal transactions
Dragonchain and its customers have demonstrated extraordinary usability as a feature in many applications, where users do not need to know that the system is backed by a live blockchain. Lyceum is one of these examples, where the progress of academy courses is being tracked, and successful completion of courses is rewarded with certificates on chain. Our @Save_The_Tweet bot is popular on Twitter. When used with one of the following hashtags - #please, #blockchain, #ThankYou, or #eternalize the tweet is saved through Eternal to multiple blockchains. A proof report is available for future reference. Other examples in use are DEN, our decentralized social media platform, and our console, where users can track their node rewards, view their TIME, and operate a business node.
Examples:

Transactions complete in a reasonable amount of time (seconds or minutes, not hours or days)
All transactions are immediately usable on chain by the system. A transaction begins the path to decentralization at the conclusion of a 5-second block when it gets distributed across 5 separate community run nodes. Full decentralization occurs within 10 minutes to 2 hours depending on which interchain (Bitcoin, Ethereum, or Ethereum Classic) the transaction hits first. Within approximately 2 hours, the combined hash power of all interchained blockchains secures the transaction.

Free to use for end users (no gas fees, or fixed/minimal fees that Reddit can pay on their behalf)
With transaction pricing as low as $0.0000025 per transaction, it may be considered reasonable for Reddit to cover transaction fees for users.
All of Reddit's Transactions on Blockchain (month)
Community points can be earned by users and distributed directly to their Reddit account in batch (as per Reddit minting plan), and allow users to withdraw rewards to their Ethereum wallet whenever they wish. Withdrawal fees can be paid by either user or Reddit. This model has been operating inside the Dragonchain system since 2018, and many security and financial compliance features can be optionally added. We feel that this capability greatly enhances user experience because it is seamless to a regular user without cryptocurrency experience, yet flexible to a tech savvy user. With regard to currency or token transactions, these would occur on the Reddit network, verified to BTC and ETH. These transactions would incur the $0.0000025 transaction fee. To estimate this fee we use the monthly active Reddit users statista with a 60% adoption rate and an estimated 10 transactions per month average resulting in an approximate $720 cost across the system. Reddit could feasibly incur all associated internal network charges (mining/minting, transfer, burn) as these are very low and controllable fees.
Reddit Internal Token Transaction Fees

Reddit Ethereum Token Transaction Fees
When we consider further the Ethereum fees that might be incurred, we have a few choices for a solution.
  1. Offload all Ethereum transaction fees (user withdrawals) to interested users as they wish to withdraw tokens for external use or sale.
  2. Cover Ethereum transaction fees by aggregating them on a timed schedule. Users would request withdrawal (from Reddit or individual subreddits), and they would be transacted on the Ethereum network every hour (or some other schedule).
  3. In a combination of the above, customers could cover aggregated fees.
  4. Integrate with alternate Ethereum roll up solutions or other proposals to aggregate minting and distribution transactions onto Ethereum.

Bonus Points

Users should be able to view their balances & transactions via a blockchain explorer-style interface
From interfaces for users who have no knowledge of blockchain technology to users who are well versed in blockchain terms such as those present in a typical block explorer, a system powered by Dragonchain has flexibility on how to provide balances and transaction data to users. Transactions can be made viewable in an Eternal Proof Report, which displays raw data along with TIME staking information and traceability all the way to Bitcoin, Ethereum, and every other Interchained network. The report shows fields such as transaction ID, timestamp, block ID, multiple verifications, and Interchain proof. See example here.
Node payouts within the Dragonchain console are listed in chronological order and can be further seen in either Dragons or USD. See example here.
In our social media platform, Dragon Den, users can see, in real-time, their NRG and MTR balances. See example here.
A new influencer app powered by Dragonchain, Raiinmaker, breaks down data into a user friendly interface that shows coin portfolio, redeemed rewards, and social scores per campaign. See example here.

Exiting is fast & simple
Withdrawing funds on Dragonchain’s console requires three clicks, however, withdrawal scenarios with more enhanced security features per Reddit’s discretion are obtainable.

Interoperability Compatibility with third party apps (wallets/contracts/etc) is necessary.
Proven interoperability at scale that surpasses the required specifications. Our entire platform consists of interoperable blockchains connected to each other and traditional systems. APIs are well documented. Third party permissions are possible with a simple smart contract without the end user being aware. No need to learn any specialized proprietary language. Any code base (not subsets) is usable within a Docker container. Interoperable with any blockchain or traditional APIs. We’ve witnessed relatively complex systems built by engineers with no blockchain or cryptocurrency experience. We’ve also demonstrated the creation of smart contracts within minutes built with BASH shell and Node.js. Please see our source code and API documentation.

Scaling solutions should be extensible and allow third parties to build on top of it Open source and extensible
APIs should be well documented and stable

Documentation should be clear and complete
For full documentation, explore our docs, SDK’s, Github repo’s, architecture documents, original Disney documentation, and other links or resources provided in this proposal.

Third-party permissionless integrations should be possible & straightforward Smart contracts are Docker based, can be written in any language, use full language (not subsets), and can therefore be integrated with any system including traditional system APIs. Simple is better. Learning an uncommon or proprietary language should not be necessary.
Advanced knowledge of mathematics, cryptography, or L2 scaling should not be required. Compatibility with common utilities & toolchains is expected.
Dragonchain business nodes and smart contracts leverage Docker to allow the use of literally any language or executable code. No proprietary language is necessary. We’ve witnessed relatively complex systems built by engineers with no blockchain or cryptocurrency experience. We’ve also demonstrated the creation of smart contracts within minutes built with BASH shell and Node.js.

Bonus

Bonus Points: Show us how it works. Do you have an idea for a cool new use case for Community Points? Build it!

TIME

Community points could be awarded to Reddit users based upon TIME too, whereas the longer someone is part of a subreddit, the more community points someone naturally gained, even if not actively commenting or sharing new posts. A daily login could be required for these community points to be credited. This grants awards to readers too and incentivizes readers to create an account on Reddit if they browse the website often. This concept could also be leveraged to provide some level of reputation based upon duration and consistency of contribution to a community subreddit.

Dragon Den

Dragonchain has already built a social media platform that harnesses community involvement. Dragon Den is a decentralized community built on the Dragonchain blockchain platform. Dragon Den is Dragonchain’s answer to fake news, trolling, and censorship. It incentivizes the creation and evaluation of quality content within communities. It could be described as being a shareholder of a subreddit or Reddit in its entirety. The more your subreddit is thriving, the more rewarding it will be. Den is currently in a public beta and in active development, though the real token economy is not live yet. There are different tokens for various purposes. Two tokens are Lair Ownership Rights (LOR) and Lair Ownership Tokens (LOT). LOT is a non-fungible token for ownership of a specific Lair. LOT will only be created and converted from LOR.
Energy (NRG) and Matter (MTR) work jointly. Your MTR determines how much NRG you receive in a 24-hour period. Providing quality content, or evaluating content will earn MTR.

Security. Users have full ownership & control of their points.
All community points awarded based upon any type of activity or gift, are secured and provable to all Interchain networks (currently BTC, ETH, ETC). Users are free to spend and withdraw their points as they please, depending on the features Reddit wants to bring into production.

Balances and transactions cannot be forged, manipulated, or blocked by Reddit or anyone else
Users can withdraw their balance to their ERC20 wallet, directly through Reddit. Reddit can cover the fees on their behalf, or the user covers this with a portion of their balance.

Users should own their points and be able to get on-chain ERC20 tokens without permission from anyone else
Through our console users can withdraw their ERC20 rewards. This can be achieved on Reddit too. Here is a walkthrough of our console, though this does not show the quick withdrawal functionality, a user can withdraw at any time. https://www.youtube.com/watch?v=aNlTMxnfVHw

Points should be recoverable to on-chain ERC20 tokens even if all third-parties involved go offline
If necessary, signed transactions from the Reddit system (e.g. Reddit + Subreddit) can be sent to the Ethereum smart contract for minting.

A public, third-party review attesting to the soundness of the design should be available
To our knowledge, at least two large corporations, including a top 3 accounting firm, have conducted positive reviews. These reviews have never been made public, as Dragonchain did not pay or contract for these studies to be released.

Bonus points
Public, third-party implementation review available or in progress
See above

Compatibility with HSMs & hardware wallets
For the purpose of this proposal, all tokenization would be on the Ethereum network using standard token contracts and as such, would be able to leverage all hardware wallet and Ethereum ecosystem services.

Other Considerations

Minting/distributing tokens is not performed by Reddit directly
This operation can be automated by smart contract on Ethereum. Subreddits can if desired have a role to play.

One off point burning, as well as recurring, non-interactive point burning (for subreddit memberships) should be possible and scalable
This is possible and scalable with interaction between Dragonchain Reddit system and Ethereum token contract(s).

Fully open-source solutions are strongly preferred
Dragonchain is fully open source (see section on Disney release after conclusion).

Conclusion

Whether it is today, or in the future, we would like to work together to bring secure flexibility to the highest standards. It is our hope to be considered by Ethereum, Reddit, and other integrative solutions so we may further discuss the possibilities of implementation. In our public demonstration, 256 million transactions were handled in our operational network on chain in 24 hours, for the low cost of $25K, which if run today would cost $625. Dragonchain’s interoperable foundation provides the atmosphere necessary to implement a frictionless community points system. Thank you for your consideration of our proposal. We look forward to working with the community to make something great!

Disney Releases Blockchain Platform as Open Source

The team at Disney created the Disney Private Blockchain Platform. The system was a hybrid interoperable blockchain platform for ledgering and smart contract development geared toward solving problems with blockchain adoption and usability. All objective evaluation would consider the team’s output a success. We released a list of use cases that we explored in some capacity at Disney, and our input on blockchain standardization as part of our participation in the W3C Blockchain Community Group.
https://lists.w3.org/Archives/Public/public-blockchain/2016May/0052.html

Open Source

In 2016, Roets proposed to release the platform as open source to spread the technology outside of Disney, as others within the W3C group were interested in the solutions that had been created inside of Disney.
Following a long process, step by step, the team met requirements for release. Among the requirements, the team had to:
  • Obtain VP support and approval for the release
  • Verify ownership of the software to be released
  • Verify that no proprietary content would be released
  • Convince the organization that there was a value to the open source community
  • Convince the organization that there was a value to Disney
  • Offer the plan for ongoing maintenance of the project outside of Disney
  • Itemize competing projects
  • Verify no conflict of interest
  • Preferred license
  • Change the project name to not use the name Disney, any Disney character, or any other associated IP - proposed Dragonchain - approved
  • Obtain legal approval
  • Approval from corporate, parks, and other business units
  • Approval from multiple Disney patent groups Copyright holder defined by Disney (Disney Connected and Advanced Technologies)
  • Trademark searches conducted for the selected name Dragonchain
  • Obtain IT security approval
  • Manual review of OSS components conducted
  • OWASP Dependency and Vulnerability Check Conducted
  • Obtain technical (software) approval
  • Offer management, process, and financial plans for the maintenance of the project.
  • Meet list of items to be addressed before release
  • Remove all Disney project references and scripts
  • Create a public distribution list for email communications
  • Remove Roets’ direct and internal contact information
  • Create public Slack channel and move from Disney slack channels
  • Create proper labels for issue tracking
  • Rename internal private Github repository
  • Add informative description to Github page
  • Expand README.md with more specific information
  • Add information beyond current “Blockchains are Magic”
  • Add getting started sections and info on cloning/forking the project
  • Add installation details
  • Add uninstall process
  • Add unit, functional, and integration test information
  • Detail how to contribute and get involved
  • Describe the git workflow that the project will use
  • Move to public, non-Disney git repository (Github or Bitbucket)
  • Obtain Disney Open Source Committee approval for release
On top of meeting the above criteria, as part of the process, the maintainer of the project had to receive the codebase on their own personal email and create accounts for maintenance (e.g. Github) with non-Disney accounts. Given the fact that the project spanned multiple business units, Roets was individually responsible for its ongoing maintenance. Because of this, he proposed in the open source application to create a non-profit organization to hold the IP and maintain the project. This was approved by Disney.
The Disney Open Source Committee approved the application known as OSSRELEASE-10, and the code was released on October 2, 2016. Disney decided to not issue a press release.
Original OSSRELASE-10 document

Dragonchain Foundation

The Dragonchain Foundation was created on January 17, 2017. https://den.social/l/Dragonchain/24130078352e485d96d2125082151cf0/dragonchain-and-disney/
submitted by j0j0r0 to ethereum [link] [comments]

Scaling Reddit Community Points with Arbitrum Rollup: a piece of cake

Scaling Reddit Community Points with Arbitrum Rollup: a piece of cake
https://preview.redd.it/b80c05tnb9e51.jpg?width=2550&format=pjpg&auto=webp&s=850282c1a3962466ed44f73886dae1c8872d0f31
Submitted for consideration to The Great Reddit Scaling Bake-Off
Baked by the pastry chefs at Offchain Labs
Please send questions or comments to [[email protected] ](mailto:[email protected])
1. Overview
We're excited to submit Arbitrum Rollup for consideration to The Great Reddit Scaling Bake-Off. Arbitrum Rollup is the only Ethereum scaling solution that supports arbitrary smart contracts without compromising on Ethereum's security or adding points of centralization. For Reddit, this means that Arbitrum can not only scale the minting and transfer of Community Points, but it can foster a creative ecosystem built around Reddit Community Points enabling points to be used in a wide variety of third party applications. That's right -- you can have your cake and eat it too!
Arbitrum Rollup isn't just Ethereum-style. Its Layer 2 transactions are byte-for-byte identical to Ethereum, which means Ethereum users can continue to use their existing addresses and wallets, and Ethereum developers can continue to use their favorite toolchains and development environments out-of-the-box with Arbitrum. Coupling Arbitrum’s tooling-compatibility with its trustless asset interoperability, Reddit not only can scale but can onboard the entire Ethereum community at no cost by giving them the same experience they already know and love (well, certainly know).
To benchmark how Arbitrum can scale Reddit Community Points, we launched the Reddit contracts on an Arbitrum Rollup chain. Since Arbitrum provides full Solidity support, we didn't have to rewrite the Reddit contracts or try to mimic their functionality using an unfamiliar paradigm. Nope, none of that. We launched the Reddit contracts unmodified on Arbitrum Rollup complete with support for minting and distributing points. Like every Arbitrum Rollup chain, the chain included a bridge interface in which users can transfer Community Points or any other asset between the L1 and L2 chains. Arbitrum Rollup chains also support dynamic contract loading, which would allow third-party developers to launch custom ecosystem apps that integrate with Community Points on the very same chain that runs the Reddit contracts.
1.1 Why Ethereum
Perhaps the most exciting benefit of distributing Community Points using a blockchain is the ability to seamlessly port points to other applications and use them in a wide variety of contexts. Applications may include simple transfers such as a restaurant that allows Redditors to spend points on drinks. Or it may include complex smart contracts -- such as placing Community Points as a wager for a multiparty game or as collateral in a financial contract.
The common denominator between all of the fun uses of Reddit points is that it needs a thriving ecosystem of both users and developers, and the Ethereum blockchain is perhaps the only smart contract platform with significant adoption today. While many Layer 1 blockchains boast lower cost or higher throughput than the Ethereum blockchain, more often than not, these attributes mask the reality of little usage, weaker security, or both.
Perhaps another platform with significant usage will rise in the future. But today, Ethereum captures the mindshare of the blockchain community, and for Community Points to provide the most utility, the Ethereum blockchain is the natural choice.
1.2 Why Arbitrum
While Ethereum's ecosystem is unmatched, the reality is that fees are high and capacity is too low to support the scale of Reddit Community Points. Enter Arbitrum. Arbitrum Rollup provides all of the ecosystem benefits of Ethereum, but with orders of magnitude more capacity and at a fraction of the cost of native Ethereum smart contracts. And most of all, we don't change the experience from users. They continue to use the same wallets, addresses, languages, and tools.
Arbitrum Rollup is not the only solution that can scale payments, but it is the only developed solution that can scale both payments and arbitrary smart contracts trustlessly, which means that third party users can build highly scalable add-on apps that can be used without withdrawing money from the Rollup chain. If you believe that Reddit users will want to use their Community Points in smart contracts--and we believe they will--then it makes the most sense to choose a single scaling solution that can support the entire ecosystem, eliminating friction for users.
We view being able to run smart contracts in the same scaling solution as fundamentally critical since if there's significant demand in running smart contracts from Reddit's ecosystem, this would be a load on Ethereum and would itself require a scaling solution. Moreover, having different scaling solutions for the minting/distribution/spending of points and for third party apps would be burdensome for users as they'd have to constantly shuffle their Points back and forth.
2. Arbitrum at a glance
Arbitrum Rollup has a unique value proposition as it offers a combination of features that no other scaling solution achieves. Here we highlight its core attributes.
Decentralized. Arbitrum Rollup is as decentralized as Ethereum. Unlike some other Layer 2 scaling projects, Arbitrum Rollup doesn't have any centralized components or centralized operators who can censor users or delay transactions. Even in non-custodial systems, centralized components provide a risk as the operators are generally incentivized to increase their profit by extracting rent from users often in ways that severely degrade user experience. Even if centralized operators are altruistic, centralized components are subject to hacking, coercion, and potential liability.
Massive Scaling. Arbitrum achieves order of magnitude scaling over Ethereum's L1 smart contracts. Our software currently supports 453 transactions-per-second for basic transactions (at 1616 Ethereum gas per tx). We have a lot of room left to optimize (e.g. aggregating signatures), and over the next several months capacity will increase significantly. As described in detail below, Arbitrum can easily support and surpass Reddit's anticipated initial load, and its capacity will continue to improve as Reddit's capacity needs grow.
Low cost. The cost of running Arbitrum Rollup is quite low compared to L1 Ethereum and other scaling solutions such as those based on zero-knowledge proofs. Layer 2 fees are low, fixed, and predictable and should not be overly burdensome for Reddit to cover. Nobody needs to use special equipment or high-end machines. Arbitrum requires validators, which is a permissionless role that can be run on any reasonable on-line machine. Although anybody can act as a validator, in order to protect against a “tragedy of the commons” and make sure reputable validators are participating, we support a notion of “invited validators” that are compensated for their costs. In general, users pay (low) fees to cover the invited validators’ costs, but we imagine that Reddit may cover this cost for its users. See more on the costs and validator options below.
Ethereum Developer Experience. Not only does Arbitrum support EVM smart contracts, but the developer experience is identical to that of L1 Ethereum contracts and fully compatible with Ethereum tooling. Developers can port existing Solidity apps or write new ones using their favorite and familiar toolchains (e.g. Truffle, Buidler). There are no new languages or coding paradigms to learn.
Ethereum wallet compatibility. Just as in Ethereum, Arbitrum users need only hold keys, but do not have to store any coin history or additional data to protect or access their funds. Since Arbitrum transactions are semantically identical to Ethereum L1 transactions, existing Ethereum users can use their existing Ethereum keys with their existing wallet software such as Metamask.
Token interoperability. Users can easily transfer their ETH, ERC-20 and ERC-721 tokens between Ethereum and the Arbitrum Rollup chain. As we explain in detail below, it is possible to mint tokens in L2 that can subsequently be withdrawn and recognized by the L1 token contract.
Fast finality. Transactions complete with the same finality time as Ethereum L1 (and it's possible to get faster finality guarantees by trading away trust assumptions; see the Arbitrum Rollup whitepaper for details).
Non-custodial. Arbitrum Rollup is a non-custodial scaling solution, so users control their funds/points and neither Reddit nor anyone else can ever access or revoke points held by users.
Censorship Resistant. Since it's completely decentralized, and the Arbitrum protocol guarantees progress trustlessly, Arbitrum Rollup is just as censorship-proof as Ethereum.
Block explorer. The Arbitrum Rollup block explorer allows users to view and analyze transactions on the Rollup chain.
Limitations
Although this is a bake-off, we're not going to sugar coat anything. Arbitrum Rollup, like any Optimistic Rollup protocol, does have one limitation, and that's the delay on withdrawals.
As for the concrete length of the delay, we've done a good deal of internal modeling and have blogged about this as well. Our current modeling suggests a 3-hour delay is sufficient (but as discussed in the linked post there is a tradeoff space between the length of the challenge period and the size of the validators’ deposit).
Note that this doesn't mean that the chain is delayed for three hours. Arbitrum Rollup supports pipelining of execution, which means that validators can keep building new states even while previous ones are “in the pipeline” for confirmation. As the challenge delays expire for each update, a new state will be confirmed (read more about this here).
So activity and progress on the chain are not delayed by the challenge period. The only thing that's delayed is the consummation of withdrawals. Recall though that any single honest validator knows immediately (at the speed of L1 finality) which state updates are correct and can guarantee that they will eventually be confirmed, so once a valid withdrawal has been requested on-chain, every honest party knows that the withdrawal will definitely happen. There's a natural place here for a liquidity market in which a validator (or someone who trusts a validator) can provide withdrawal loans for a small interest fee. This is a no-risk business for them as they know which withdrawals will be confirmed (and can force their confirmation trustlessly no matter what anyone else does) but are just waiting for on-chain finality.
3. The recipe: How Arbitrum Rollup works
For a description of the technical components of Arbitrum Rollup and how they interact to create a highly scalable protocol with a developer experience that is identical to Ethereum, please refer to the following documents:
Arbitrum Rollup Whitepaper
Arbitrum academic paper (describes a previous version of Arbitrum)
4. Developer docs and APIs
For full details about how to set up and interact with an Arbitrum Rollup chain or validator, please refer to our developer docs, which can be found at https://developer.offchainlabs.com/.
Note that the Arbitrum version described on that site is older and will soon be replaced by the version we are entering in Reddit Bake-Off, which is still undergoing internal testing before public release.
5. Who are the validators?
As with any Layer 2 protocol, advancing the protocol correctly requires at least one validator (sometimes called block producers) that is honest and available. A natural question is: who are the validators?
Recall that the validator set for an Arbitrum chain is open and permissionless; anyone can start or stop validating at will. (A useful analogy is to full nodes on an L1 chain.) But we understand that even though anyone can participate, Reddit may want to guarantee that highly reputable nodes are validating their chain. Reddit may choose to validate the chain themselves and/or hire third-party validators.To this end, we have begun building a marketplace for validator-for-hire services so that dapp developers can outsource validation services to reputable nodes with high up-time. We've announced a partnership in which Chainlink nodes will provide Arbitrum validation services, and we expect to announce more partnerships shortly with other blockchain infrastructure providers.
Although there is no requirement that validators are paid, Arbitrum’s economic model tracks validators’ costs (e.g. amount of computation and storage) and can charge small fees on user transactions, using a gas-type system, to cover those costs. Alternatively, a single party such as Reddit can agree to cover the costs of invited validators.
6. Reddit Contract Support
Since Arbitrum contracts and transactions are byte-for-byte compatible with Ethereum, supporting the Reddit contracts is as simple as launching them on an Arbitrum chain.
Minting. Arbitrum Rollup supports hybrid L1/L2 tokens which can be minted in L2 and then withdrawn onto the L1. An L1 contract at address A can make a special call to the EthBridge which deploys a "buddy contract" to the same address A on an Arbitrum chain. Since it's deployed at the same address, users can know that the L2 contract is the authorized "buddy" of the L1 contract on the Arbitrum chain.
For minting, the L1 contract is a standard ERC-20 contract which mints and burns tokens when requested by the L2 contract. It is paired with an ERC-20 contract in L2 which mints tokens based on whatever programmer provided minting facility is desired and burns tokens when they are withdrawn from the rollup chain. Given this base infrastructure, Arbitrum can support any smart contract based method for minting tokens in L2, and indeed we directly support Reddit's signature/claim based minting in L2.
Batch minting. What's better than a mint cookie? A whole batch! In addition to supporting Reddit’s current minting/claiming scheme, we built a second minting design, which we believe outperforms the signature/claim system in many scenarios.
In the current system, Reddit periodically issues signed statements to users, who then take those statements to the blockchain to claim their tokens. An alternative approach would have Reddit directly submit the list of users/amounts to the blockchain and distribute the tokens to the users without the signature/claim process.
To optimize the cost efficiency of this approach, we designed an application-specific compression scheme to minimize the size of the batch distribution list. We analyzed the data from Reddit's previous distributions and found that the data is highly compressible since token amounts are small and repeated, and addresses appear multiple times. Our function groups transactions by size, and replaces previously-seen addresses with a shorter index value. We wrote client code to compress the data, wrote a Solidity decompressing function, and integrated that function into Reddit’s contract running on Arbitrum.
When we ran the compression function on the previous Reddit distribution data, we found that we could compress batched minting data down to to 11.8 bytes per minting event (averaged over a 6-month trace of Reddit’s historical token grants)compared with roughly 174 bytes of on-chain data needed for the signature claim approach to minting (roughly 43 for an RLP-encoded null transaction + 65 for Reddit's signature + 65 for the user's signature + roughly 8 for the number of Points) .
The relative benefit of the two approaches with respect to on-chain call data cost depends on the percentage of users that will actually claim their tokens on chain. With the above figures, batch minting will be cheaper if roughly 5% of users redeem their claims. We stress that our compression scheme is not Arbitrum-specific and would be beneficial in any general-purpose smart contract platform.
8. Benchmarks and costs
In this section, we give the full costs of operating the Reddit contracts on an Arbitrum Rollup chain including the L1 gas costs for the Rollup chain, the costs of computation and storage for the L2 validators as well as the capital lockup requirements for staking.
Arbitrum Rollup is still on testnet, so we did not run mainnet benchmarks. Instead, we measured the L1 gas cost and L2 workload for Reddit operations on Arbitrum and calculated the total cost assuming current Ethereum gas prices. As noted below in detail, our measurements do not assume that Arbitrum is consuming the entire capacity of Ethereum. We will present the details of our model now, but for full transparency you can also play around with it yourself and adjust the parameters, by copying the spreadsheet found here.
Our cost model is based on measurements of Reddit’s contracts, running unmodified (except for the addition of a batch minting function) on Arbitrum Rollup on top of Ethereum.
On the distribution of transactions and frequency of assertions. Reddit's instructions specify the following minimum parameters that submissions should support:
Over a 5 day period, your scaling PoC should be able to handle:
  • 100,000 point claims (minting & distributing points)
  • 25,000 subscriptions
  • 75,000 one-off points burning
  • 100,000 transfers
We provide the full costs of operating an Arbitrum Rollup chain with this usage under the assumption that tokens are minted or granted to users in batches, but other transactions are uniformly distributed over the 5 day period. Unlike some other submissions, we do not make unrealistic assumptions that all operations can be submitted in enormous batches. We assume that batch minting is done in batches that use only a few percent on an L1 block’s gas, and that other operations come in evenly over time and are submitted in batches, with one batch every five minutes to keep latency reasonable. (Users are probably already waiting for L1 finality, which takes at least that long to achieve.)
We note that assuming that there are only 300,000 transactions that arrive uniformly over the 5 day period will make our benchmark numbers lower, but we believe that this will reflect the true cost of running the system. To see why, say that batches are submitted every five minutes (20 L1 blocks) and there's a fixed overhead of c bytes of calldata per batch, the cost of which will get amortized over all transactions executed in that batch. Assume that each individual transaction adds a marginal cost of t. Lastly assume the capacity of the scaling system is high enough that it can support all of Reddit's 300,000 transactions within a single 20-block batch (i.e. that there is more than c + 300,000*t byes of calldata available in 20 blocks).
Consider what happens if c, the per-batch overhead, is large (which it is in some systems, but not in Arbitrum). In the scenario that transactions actually arrive at the system's capacity and each batch is full, then c gets amortized over 300,000 transactions. But if we assume that the system is not running at capacity--and only receives 300,000 transactions arriving uniformly over 5 days-- then each 20-block assertion will contain about 200 transactions, and thus each transaction will pay a nontrivial cost due to c.
We are aware that other proposals presented scaling numbers assuming that 300,000 transactions arrived at maximum capacity and was executed in a single mega-transaction, but according to our estimates, for at least one such report, this led to a reported gas price that was 2-3 orders of magnitude lower than it would have been assuming uniform arrival. We make more realistic batching assumptions, and we believe Arbitrum compares well when batch sizes are realistic.
Our model. Our cost model includes several sources of cost:
  • L1 gas costs: This is the cost of posting transactions as calldata on the L1 chain, as well as the overhead associated with each batch of transactions, and the L1 cost of settling transactions in the Arbitrum protocol.
  • Validator’s staking costs: In normal operation, one validator will need to be staked. The stake is assumed to be 0.2% of the total value of the chain (which is assumed to be $1 per user who is eligible to claim points). The cost of staking is the interest that could be earned on the money if it were not staked.
  • Validator computation and storage: Every validator must do computation to track the chain’s processing of transactions, and must maintain storage to keep track of the contracts’ EVM storage. The cost of computation and storage are estimated based on measurements, with the dollar cost of resources based on Amazon Web Services pricing.
It’s clear from our modeling that the predominant cost is for L1 calldata. This will probably be true for any plausible rollup-based system.
Our model also shows that Arbitrum can scale to workloads much larger than Reddit’s nominal workload, without exhausting L1 or L2 resources. The scaling bottleneck will ultimately be calldata on the L1 chain. We believe that cost could be reduced substantially if necessary by clever encoding of data. (In our design any compression / decompression of L2 transaction calldata would be done by client software and L2 programs, never by an L1 contract.)
9. Status of Arbitrum Rollup
Arbitrum Rollup is live on Ethereum testnet. All of the code written to date including everything included in the Reddit demo is open source and permissively licensed under the Apache V2 license. The first testnet version of Arbitrum Rollup was released on testnet in February. Our current internal version, which we used to benchmark the Reddit contracts, will be released soon and will be a major upgrade.
Both the Arbitrum design as well as the implementation are heavily audited by independent third parties. The Arbitrum academic paper was published at USENIX Security, a top-tier peer-reviewed academic venue. For the Arbitrum software, we have engaged Trail of Bits for a security audit, which is currently ongoing, and we are committed to have a clean report before launching on Ethereum mainnet.
10. Reddit Universe Arbitrum Rollup Chain
The benchmarks described in this document were all measured using the latest internal build of our software. When we release the new software upgrade publicly we will launch a Reddit Universe Arbitrum Rollup chain as a public demo, which will contain the Reddit contracts as well as a Uniswap instance and a Connext Hub, demonstrating how Community Points can be integrated into third party apps. We will also allow members of the public to dynamically launch ecosystem contracts. We at Offchain Labs will cover the validating costs for the Reddit Universe public demo.
If the folks at Reddit would like to evaluate our software prior to our public demo, please email us at [email protected] and we'd be more than happy to provide early access.
11. Even more scaling: Arbitrum Sidechains
Rollups are an excellent approach to scaling, and we are excited about Arbitrum Rollup which far surpasses Reddit's scaling needs. But looking forward to Reddit's eventual goal of supporting hundreds of millions of users, there will likely come a time when Reddit needs more scaling than any Rollup protocol can provide.
While Rollups greatly reduce costs, they don't break the linear barrier. That is, all transactions have an on-chain footprint (because all calldata must be posted on-chain), albeit a far smaller one than on native Ethereum, and the L1 limitations end up being the bottleneck for capacity and cost. Since Ethereum has limited capacity, this linear use of on-chain resources means that costs will eventually increase superlinearly with traffic.
The good news is that we at Offchain Labs have a solution in our roadmap that can satisfy this extreme-scaling setting as well: Arbitrum AnyTrust Sidechains. Arbitrum Sidechains are similar to Arbitrum Rollup, but deviate in that they name a permissioned set of validators. When a chain’s validators agree off-chain, they can greatly reduce the on-chain footprint of the protocol and require almost no data to be put on-chain. When validators can't reach unanimous agreement off-chain, the protocol reverts to Arbitrum Rollup. Technically, Arbitrum Sidechains can be viewed as a hybrid between state channels and Rollup, switching back and forth as necessary, and combining the performance and cost that state channels can achieve in the optimistic case, with the robustness of Rollup in other cases. The core technical challenge is how to switch seamlessly between modes and how to guarantee that security is maintained throughout.
Arbitrum Sidechains break through this linear barrier, while still maintaining a high level of security and decentralization. Arbitrum Sidechains provide the AnyTrust guarantee, which says that as long as any one validator is honest and available (even if you don't know which one will be), the L2 chain is guaranteed to execute correctly according to its code and guaranteed to make progress. Unlike in a state channel, offchain progress does not require unanimous consent, and liveness is preserved as long as there is a single honest validator.
Note that the trust model for Arbitrum Sidechains is much stronger than for typical BFT-style chains which introduce a consensus "voting" protocols among a small permissioned group of validators. BFT-based protocols require a supermajority (more than 2/3) of validators to agree. In Arbitrum Sidechains, by contrast, all you need is a single honest validator to achieve guaranteed correctness and progress. Notice that in Arbitrum adding validators strictly increases security since the AnyTrust guarantee provides correctness as long as any one validator is honest and available. By contrast, in BFT-style protocols, adding nodes can be dangerous as a coalition of dishonest nodes can break the protocol.
Like Arbitrum Rollup, the developer and user experiences for Arbitrum Sidechains will be identical to that of Ethereum. Reddit would be able to choose a large and diverse set of validators, and all that they would need to guarantee to break through the scaling barrier is that a single one of them will remain honest.
We hope to have Arbitrum Sidechains in production in early 2021, and thus when Reddit reaches the scale that surpasses the capacity of Rollups, Arbitrum Sidechains will be waiting and ready to help.
While the idea to switch between channels and Rollup to get the best of both worlds is conceptually simple, getting the details right and making sure that the switch does not introduce any attack vectors is highly non-trivial and has been the subject of years of our research (indeed, we were working on this design for years before the term Rollup was even coined).
12. How Arbitrum compares
We include a comparison to several other categories as well as specific projects when appropriate. and explain why we believe that Arbitrum is best suited for Reddit's purposes. We focus our attention on other Ethereum projects.
Payment only Rollups. Compared to Arbitrum Rollup, ZK-Rollups and other Rollups that only support token transfers have several disadvantages:
  • As outlined throughout the proposal, we believe that the entire draw of Ethereum is in its rich smart contracts support which is simply not achievable with today's zero-knowledge proof technology. Indeed, scaling with a ZK-Rollup will add friction to the deployment of smart contracts that interact with Community Points as users will have to withdraw their coins from the ZK-Rollup and transfer them to a smart contract system (like Arbitrum). The community will be best served if Reddit builds on a platform that has built-in, frictionless smart-contract support.
  • All other Rollup protocols of which we are aware employ a centralized operator. While it's true that users retain custody of their coins, the centralized operator can often profit from censoring, reordering, or delaying transactions. A common misconception is that since they're non-custodial protocols, a centralized sequencer does not pose a risk but this is incorrect as the sequencer can wreak havoc or shake down users for side payments without directly stealing funds.
  • Sidechain type protocols can eliminate some of these issues, but they are not trustless. Instead, they require trust in some quorum of a committee, often requiring two-third of the committee to be honest, compared to rollup protocols like Arbitrum that require only a single honest party. In addition, not all sidechain type protocols have committees that are diverse, or even non-centralized, in practice.
  • Plasma-style protocols have a centralized operator and do not support general smart contracts.
13. Concluding Remarks
While it's ultimately up to the judges’ palate, we believe that Arbitrum Rollup is the bakeoff choice that Reddit kneads. We far surpass Reddit's specified workload requirement at present, have much room to optimize Arbitrum Rollup in the near term, and have a clear path to get Reddit to hundreds of millions of users. Furthermore, we are the only project that gives developers and users the identical interface as the Ethereum blockchain and is fully interoperable and tooling-compatible, and we do this all without any new trust assumptions or centralized components.
But no matter how the cookie crumbles, we're glad to have participated in this bake-off and we thank you for your consideration.
About Offchain Labs
Offchain Labs, Inc. is a venture-funded New York company that spun out of Princeton University research, and is building the Arbitrum platform to usher in the next generation of scalable, interoperable, and compatible smart contracts. Offchain Labs is backed by Pantera Capital, Compound VC, Coinbase Ventures, and others.
Leadership Team
Ed Felten
Ed Felten is Co-founder and Chief Scientist at Offchain Labs. He is on leave from Princeton University, where he is the Robert E. Kahn Professor of Computer Science and Public Affairs. From 2015 to 2017 he served at the White House as Deputy United States Chief Technology Officer and senior advisor to the President. He is an ACM Fellow and member of the National Academy of Engineering. Outside of work, he is an avid runner, cook, and L.A. Dodgers fan.
Steven Goldfeder
Steven Goldfeder is Co-founder and Chief Executive Officer at Offchain Labs. He holds a PhD from Princeton University, where he worked at the intersection of cryptography and cryptocurrencies including threshold cryptography, zero-knowledge proof systems, and post-quantum signatures. He is a co-author of Bitcoin and Cryptocurrency Technologies, the leading textbook on cryptocurrencies, and he has previously worked at Google and Microsoft Research, where he co-invented the Picnic signature algorithm. When not working, you can find Steven spending time with his family, taking a nature walk, or twisting balloons.
Harry Kalodner
Harry Kalodner is Co-founder and Chief Technology Officer at Offchain Labs where he leads the engineering team. Before the company he attended Princeton as a Ph.D candidate where his research explored economics, anonymity, and incentive compatibility of cryptocurrencies, and he also has worked at Apple. When not up at 3:00am writing code, Harry occasionally sleeps.
submitted by hkalodner to ethereum [link] [comments]

Bob The Magic Custodian



Summary: Everyone knows that when you give your assets to someone else, they always keep them safe. If this is true for individuals, it is certainly true for businesses.
Custodians always tell the truth and manage funds properly. They won't have any interest in taking the assets as an exchange operator would. Auditors tell the truth and can't be misled. That's because organizations that are regulated are incapable of lying and don't make mistakes.

First, some background. Here is a summary of how custodians make us more secure:

Previously, we might give Alice our crypto assets to hold. There were risks:

But "no worries", Alice has a custodian named Bob. Bob is dressed in a nice suit. He knows some politicians. And he drives a Porsche. "So you have nothing to worry about!". And look at all the benefits we get:
See - all problems are solved! All we have to worry about now is:
It's pretty simple. Before we had to trust Alice. Now we only have to trust Alice, Bob, and all the ways in which they communicate. Just think of how much more secure we are!

"On top of that", Bob assures us, "we're using a special wallet structure". Bob shows Alice a diagram. "We've broken the balance up and store it in lots of smaller wallets. That way", he assures her, "a thief can't take it all at once". And he points to a historic case where a large sum was taken "because it was stored in a single wallet... how stupid".
"Very early on, we used to have all the crypto in one wallet", he said, "and then one Christmas a hacker came and took it all. We call him the Grinch. Now we individually wrap each crypto and stick it under a binary search tree. The Grinch has never been back since."

"As well", Bob continues, "even if someone were to get in, we've got insurance. It covers all thefts and even coercion, collusion, and misplaced keys - only subject to the policy terms and conditions." And with that, he pulls out a phone-book sized contract and slams it on the desk with a thud. "Yep", he continues, "we're paying top dollar for one of the best policies in the country!"
"Can I read it?' Alice asks. "Sure," Bob says, "just as soon as our legal team is done with it. They're almost through the first chapter." He pauses, then continues. "And can you believe that sales guy Mike? He has the same year Porsche as me. I mean, what are the odds?"

"Do you use multi-sig?", Alice asks. "Absolutely!" Bob replies. "All our engineers are fully trained in multi-sig. Whenever we want to set up a new wallet, we generate 2 separate keys in an air-gapped process and store them in this proprietary system here. Look, it even requires the biometric signature from one of our team members to initiate any withdrawal." He demonstrates by pressing his thumb into the display. "We use a third-party cloud validation API to match the thumbprint and authorize each withdrawal. The keys are also backed up daily to an off-site third-party."
"Wow that's really impressive," Alice says, "but what if we need access for a withdrawal outside of office hours?" "Well that's no issue", Bob says, "just send us an email, call, or text message and we always have someone on staff to help out. Just another part of our strong commitment to all our customers!"

"What about Proof of Reserve?", Alice asks. "Of course", Bob replies, "though rather than publish any blockchain addresses or signed transaction, for privacy we just do a SHA256 refactoring of the inverse hash modulus for each UTXO nonce and combine the smart contract coefficient consensus in our hyperledger lightning node. But it's really simple to use." He pushes a button and a large green checkmark appears on a screen. "See - the algorithm ran through and reserves are proven."
"Wow", Alice says, "you really know your stuff! And that is easy to use! What about fiat balances?" "Yeah, we have an auditor too", Bob replies, "Been using him for a long time so we have quite a strong relationship going! We have special books we give him every year and he's very efficient! Checks the fiat, crypto, and everything all at once!"

"We used to have a nice offline multi-sig setup we've been using without issue for the past 5 years, but I think we'll move all our funds over to your facility," Alice says. "Awesome", Bob replies, "Thanks so much! This is perfect timing too - my Porsche got a dent on it this morning. We have the paperwork right over here." "Great!", Alice replies.
And with that, Alice gets out her pen and Bob gets the contract. "Don't worry", he says, "you can take your crypto-assets back anytime you like - just subject to our cancellation policy. Our annual management fees are also super low and we don't adjust them often".

How many holes have to exist for your funds to get stolen?
Just one.

Why are we taking a powerful offline multi-sig setup, widely used globally in hundreds of different/lacking regulatory environments with 0 breaches to date, and circumventing it by a demonstrably weak third party layer? And paying a great expense to do so?
If you go through the list of breaches in the past 2 years to highly credible organizations, you go through the list of major corporate frauds (only the ones we know about), you go through the list of all the times platforms have lost funds, you go through the list of times and ways that people have lost their crypto from identity theft, hot wallet exploits, extortion, etc... and then you go through this custodian with a fine-tooth comb and truly believe they have value to add far beyond what you could, sticking your funds in a wallet (or set of wallets) they control exclusively is the absolute worst possible way to take advantage of that security.

The best way to add security for crypto-assets is to make a stronger multi-sig. With one custodian, what you are doing is giving them your cryptocurrency and hoping they're honest, competent, and flawlessly secure. It's no different than storing it on a really secure exchange. Maybe the insurance will cover you. Didn't work for Bitpay in 2015. Didn't work for Yapizon in 2017. Insurance has never paid a claim in the entire history of cryptocurrency. But maybe you'll get lucky. Maybe your exact scenario will buck the trend and be what they're willing to cover. After the large deductible and hopefully without a long and expensive court battle.

And you want to advertise this increase in risk, the lapse of judgement, an accident waiting to happen, as though it's some kind of benefit to customers ("Free institutional-grade storage for your digital assets.")? And then some people are writing to the OSC that custodians should be mandatory for all funds on every exchange platform? That this somehow will make Canadians as a whole more secure or better protected compared with standard air-gapped multi-sig? On what planet?

Most of the problems in Canada stemmed from one thing - a lack of transparency. If Canadians had known what a joke Quadriga was - it wouldn't have grown to lose $400m from hard-working Canadians from coast to coast to coast. And Gerald Cotten would be in jail, not wherever he is now (at best, rotting peacefully). EZ-BTC and mister Dave Smilie would have been a tiny little scam to his friends, not a multi-million dollar fraud. Einstein would have got their act together or been shut down BEFORE losing millions and millions more in people's funds generously donated to criminals. MapleChange wouldn't have even been a thing. And maybe we'd know a little more about CoinTradeNewNote - like how much was lost in there. Almost all of the major losses with cryptocurrency exchanges involve deception with unbacked funds.
So it's great to see transparency reports from BitBuy and ShakePay where someone independently verified the backing. The only thing we don't have is:
It's not complicated to validate cryptocurrency assets. They need to exist, they need to be spendable, and they need to cover the total balances. There are plenty of credible people and firms across the country that have the capacity to reasonably perform this validation. Having more frequent checks by different, independent, parties who publish transparent reports is far more valuable than an annual check by a single "more credible/official" party who does the exact same basic checks and may or may not publish anything. Here's an example set of requirements that could be mandated:
There are ways to structure audits such that neither crypto assets nor customer information are ever put at risk, and both can still be properly validated and publicly verifiable. There are also ways to structure audits such that they are completely reasonable for small platforms and don't inhibit innovation in any way. By making the process as reasonable as possible, we can completely eliminate any reason/excuse that an honest platform would have for not being audited. That is arguable far more important than any incremental improvement we might get from mandating "the best of the best" accountants. Right now we have nothing mandated and tons of Canadians using offshore exchanges with no oversight whatsoever.

Transparency does not prove crypto assets are safe. CoinTradeNewNote, Flexcoin ($600k), and Canadian Bitcoins ($100k) are examples where crypto-assets were breached from platforms in Canada. All of them were online wallets and used no multi-sig as far as any records show. This is consistent with what we see globally - air-gapped multi-sig wallets have an impeccable record, while other schemes tend to suffer breach after breach. We don't actually know how much CoinTrader lost because there was no visibility. Rather than publishing details of what happened, the co-founder of CoinTrader silently moved on to found another platform - the "most trusted way to buy and sell crypto" - a site that has no information whatsoever (that I could find) on the storage practices and a FAQ advising that “[t]rading cryptocurrency is completely safe” and that having your own wallet is “entirely up to you! You can certainly keep cryptocurrency, or fiat, or both, on the app.” Doesn't sound like much was learned here, which is really sad to see.
It's not that complicated or unreasonable to set up a proper hardware wallet. Multi-sig can be learned in a single course. Something the equivalent complexity of a driver's license test could prevent all the cold storage exploits we've seen to date - even globally. Platform operators have a key advantage in detecting and preventing fraud - they know their customers far better than any custodian ever would. The best job that custodians can do is to find high integrity individuals and train them to form even better wallet signatories. Rather than mandating that all platforms expose themselves to arbitrary third party risks, regulations should center around ensuring that all signatories are background-checked, properly trained, and using proper procedures. We also need to make sure that signatories are empowered with rights and responsibilities to reject and report fraud. They need to know that they can safely challenge and delay a transaction - even if it turns out they made a mistake. We need to have an environment where mistakes are brought to the surface and dealt with. Not one where firms and people feel the need to hide what happened. In addition to a knowledge-based test, an auditor can privately interview each signatory to make sure they're not in coercive situations, and we should make sure they can freely and anonymously report any issues without threat of retaliation.
A proper multi-sig has each signature held by a separate person and is governed by policies and mutual decisions instead of a hierarchy. It includes at least one redundant signature. For best results, 3of4, 3of5, 3of6, 4of5, 4of6, 4of7, 5of6, or 5of7.

History has demonstrated over and over again the risk of hot wallets even to highly credible organizations. Nonetheless, many platforms have hot wallets for convenience. While such losses are generally compensated by platforms without issue (for example Poloniex, Bitstamp, Bitfinex, Gatecoin, Coincheck, Bithumb, Zaif, CoinBene, Binance, Bitrue, Bitpoint, Upbit, VinDAX, and now KuCoin), the public tends to focus more on cases that didn't end well. Regardless of what systems are employed, there is always some level of risk. For that reason, most members of the public would prefer to see third party insurance.
Rather than trying to convince third party profit-seekers to provide comprehensive insurance and then relying on an expensive and slow legal system to enforce against whatever legal loopholes they manage to find each and every time something goes wrong, insurance could be run through multiple exchange operators and regulators, with the shared interest of having a reputable industry, keeping costs down, and taking care of Canadians. For example, a 4 of 7 multi-sig insurance fund held between 5 independent exchange operators and 2 regulatory bodies. All Canadian exchanges could pay premiums at a set rate based on their needed coverage, with a higher price paid for hot wallet coverage (anything not an air-gapped multi-sig cold wallet). Such a model would be much cheaper to manage, offer better coverage, and be much more reliable to payout when needed. The kind of coverage you could have under this model is unheard of. You could even create something like the CDIC to protect Canadians who get their trading accounts hacked if they can sufficiently prove the loss is legitimate. In cases of fraud, gross negligence, or insolvency, the fund can be used to pay affected users directly (utilizing the last transparent balance report in the worst case), something which private insurance would never touch. While it's recommended to have official policies for coverage, a model where members vote would fully cover edge cases. (Could be similar to the Supreme Court where justices vote based on case law.)
Such a model could fully protect all Canadians across all platforms. You can have a fiat coverage governed by legal agreements, and crypto-asset coverage governed by both multi-sig and legal agreements. It could be practical, affordable, and inclusive.

Now, we are at a crossroads. We can happily give up our freedom, our innovation, and our money. We can pay hefty expenses to auditors, lawyers, and regulators year after year (and make no mistake - this cost will grow to many millions or even billions as the industry grows - and it will be borne by all Canadians on every platform because platforms are not going to eat up these costs at a loss). We can make it nearly impossible for any new platform to enter the marketplace, forcing Canadians to use the same stagnant platforms year after year. We can centralize and consolidate the entire industry into 2 or 3 big players and have everyone else fail (possibly to heavy losses of users of those platforms). And when a flawed security model doesn't work and gets breached, we can make it even more complicated with even more people in suits making big money doing the job that blockchain was supposed to do in the first place. We can build a system which is so intertwined and dependent on big government, traditional finance, and central bankers that it's future depends entirely on that of the fiat system, of fractional banking, and of government bail-outs. If we choose this path, as history has shown us over and over again, we can not go back, save for revolution. Our children and grandchildren will still be paying the consequences of what we decided today.
Or, we can find solutions that work. We can maintain an open and innovative environment while making the adjustments we need to make to fully protect Canadian investors and cryptocurrency users, giving easy and affordable access to cryptocurrency for all Canadians on the platform of their choice, and creating an environment in which entrepreneurs and problem solvers can bring those solutions forward easily. None of the above precludes innovation in any way, or adds any unreasonable cost - and these three policies would demonstrably eliminate or resolve all 109 historic cases as studied here - that's every single case researched so far going back to 2011. It includes every loss that was studied so far not just in Canada but globally as well.
Unfortunately, finding answers is the least challenging part. Far more challenging is to get platform operators and regulators to agree on anything. My last post got no response whatsoever, and while the OSC has told me they're happy for industry feedback, I believe my opinion alone is fairly meaningless. This takes the whole community working together to solve. So please let me know your thoughts. Please take the time to upvote and share this with people. Please - let's get this solved and not leave it up to other people to do.

Facts/background/sources (skip if you like):



Thoughts?
submitted by azoundria2 to QuadrigaInitiative [link] [comments]

Blockchain customer care number ▶1↔ 𝟖𝟓𝟓- 𝟗𝟒𝟓↔ 𝟑𝟏𝟔𝟔 Blockchain customer support number #USA TAKEOVER✴✴

Blockchain customer care number ▶1↔ 𝟖𝟓𝟓- 𝟗𝟒𝟓↔ 𝟑𝟏𝟔𝟔 Blockchain customer support number #USA TAKEOVER✴✴
Blockchain is the most recent in the arrangement of advanced innovations that, due to their decentralized, even, dispersed and open source nature, are required to cause principal and enormous scope changes in how our present social, financial, political relations and foundations are composed. Around 20 years after the announcement of the autonomy of cyberspace1 and the crypto revolutionary manifesto,2 and 12 years after Yochai Benkler laid out how peer creation and web 2.0 would empower a bold new world,3 numerous presently accept blockchain will engage an open, decentralized, disintermediated, shrewd, trustless and cryptographic method of social organization.4 These expectations are mostly founded on the overall accomplishment of Bitcoin. Bitcoin utilizes dispersed record innovation (DLT) to monitor the flexibly and stream of the virtual badge of a money related instrument in a decentralized, disintermediated and evidently secure way. It is, in the expressions of its baffling creator(s), 'a distributed electronic money framework' and a progressing verification of concept.5 Even if Bitcoin neglects to build up itself as a steady standard cash, its fundamental mechanical plan permits people to namelessly (or if nothing else pseudonymously) trade badge of significant worth with one another in a sheltered and secure way, with little or in some cases no dependence on customary confided in mediators, as banks.6 The high perceivability of blockchain in the digital currency territory has provoked inescapable investigation of its application to different spaces, including copyright.
In its easiest depiction, a blockchain is a dispersed record, or an attach just information base, of which each client has a persistently refreshed legitimate duplicate. Any individual who approaches the record approaches a similar full exchange history and the capacity to confirm the legitimacy of all records.13 Sophisticated agreement instruments guarantee that new sections must be added to this dispersed information base on the off chance that they are steady with prior records. This dispersed information base has the ability to record any sorts of information. One can spare a self-assertive snippet of data on blockchain, which turns out to be important for the perpetual record. Records can likewise be utilized to monitor tokens having a place with explicit records (or 'wallets') and the time-stepped exchanges of tokens between accounts. All things considered, DLTs can guarantee that the exchanges are predictable after some time, and tokens are not spent twice. Contingent upon the real mechanical plan, a record holder can be an (mysterious/pseudonymous) individual, a legitimate element, a shrewd agreement (programming code), or any gathering or blend thereof. Tokens, as we show in the following segment, can speak to nearly anything: a unit of virtual money, a benefit, a physical item on the planet, or some other theoretical substance. Past these basic realities, diverse blockchains may follow various plans standards. As we clarify later, this in a general sense impacts their functioning.14
• Static and dynamic blockchain assessment; blockchain wrongdoing scene examination;
• Big data and the blockchain;
• Human–PC joint effort for blockchain applications;
• Blockchain and the Internet of things;
• Languages for insightful arrangement improvement;
• Blockchain-masterminded programming planning;
• Blockchain security and testing;
At this point, unmistakably if there is a grating, it isn't between a specific innovation and copyright. Or maybe, the erosion is between the social, monetary, and political conditions that created the blockchain innovation environment, from one viewpoint, and the social, financial, and political premises from which the current copyright framework created. Maybe abnormally, there is some theoretical arrangement—by all accounts, at any rate—between copyright's selectiveness shortage worldview and the eliteness shortage rationale of blockchains and keen agreements. Notwithstanding, when burrowing further, auxiliary incongruencies rise. Boss among them is the test of accommodating the hyper-fracture of copyright law with the generic, borderless, normalized, and robotized administrative arrangement offered by blockchain innovation.
submitted by Impossible-Mind-949 to u/Impossible-Mind-949 [link] [comments]

Blockchain toll free number ♛+𝟣/ 𝟖𝟓𝟓ღ𝟗𝟒𝟓ღ𝟑𝟏𝟔𝟔♛ Blockchain customer care number #CHICAGO #NEWYORK

Blockchain toll free number ♛+𝟣/ 𝟖𝟓𝟓ღ𝟗𝟒𝟓ღ𝟑𝟏𝟔𝟔♛ Blockchain customer care number #CHICAGO #NEWYORK

Blockchain is the most recent in the arrangement of advanced innovations that, due to their decentralized, even, dispersed and open source nature, are required to cause principal and enormous scope changes in how our present social, financial, political relations and foundations are composed. Around 20 years after the announcement of the autonomy of cyberspace1 and the crypto revolutionary manifesto,2 and 12 years after Yochai Benkler laid out how peer creation and web 2.0 would empower a bold new world,3 numerous presently accept blockchain will engage an open, decentralized, disintermediated, shrewd, trustless and cryptographic method of social organization.4 These expectations are mostly founded on the overall accomplishment of Bitcoin. Bitcoin utilizes dispersed record innovation (DLT) to monitor the flexibly and stream of the virtual badge of a money related instrument in a decentralized, disintermediated and evidently secure way. It is, in the expressions of its baffling creator(s), 'a distributed electronic money framework' and a progressing verification of concept.5 Even if Bitcoin neglects to build up itself as a steady standard cash, its fundamental mechanical plan permits people to namelessly (or if nothing else pseudonymously) trade badge of significant worth with one another in a sheltered and secure way, with little or in some cases no dependence on customary confided in mediators, as banks.6 The high perceivability of blockchain in the digital currency territory has provoked inescapable investigation of its application to different spaces, including copyright.
In its easiest depiction, a blockchain is a dispersed record, or an attach just information base, of which each client has a persistently refreshed legitimate duplicate. Any individual who approaches the record approaches a similar full exchange history and the capacity to confirm the legitimacy of all records.13 Sophisticated agreement instruments guarantee that new sections must be added to this dispersed information base on the off chance that they are steady with prior records. This dispersed information base has the ability to record any sorts of information. One can spare a self-assertive snippet of data on blockchain, which turns out to be important for the perpetual record. Records can likewise be utilized to monitor tokens having a place with explicit records (or 'wallets') and the time-stepped exchanges of tokens between accounts. All things considered, DLTs can guarantee that the exchanges are predictable after some time, and tokens are not spent twice. Contingent upon the real mechanical plan, a record holder can be an (mysterious/pseudonymous) individual, a legitimate element, a shrewd agreement (programming code), or any gathering or blend thereof. Tokens, as we show in the following segment, can speak to nearly anything: a unit of virtual money, a benefit, a physical item on the planet, or some other theoretical substance. Past these basic realities, diverse blockchains may follow various plans standards. As we clarify later, this in a general sense impacts their functioning.14
• Static and dynamic blockchain assessment; blockchain wrongdoing scene examination;
• Big data and the blockchain;
• Human–PC joint effort for blockchain applications;
• Blockchain and the Internet of things;
• Languages for insightful arrangement improvement;
• Blockchain-masterminded programming planning;
• Blockchain security and testing;
At this point, unmistakably if there is a grating, it isn't between a specific innovation and copyright. Or maybe, the erosion is between the social, monetary, and political conditions that created the blockchain innovation environment, from one viewpoint, and the social, financial, and political premises from which the current copyright framework created. Maybe abnormally, there is some theoretical arrangement—by all accounts, at any rate—between copyright's selectiveness shortage worldview and the eliteness shortage rationale of blockchains and keen agreements. Notwithstanding, when burrowing further, auxiliary incongruencies rise. Boss among them is the test of accommodating the hyper-fracture of copyright law with the generic, borderless, normalized, and robotized administrative arrangement offered by blockchain innovation.
submitted by Much_Ad4006 to u/Much_Ad4006 [link] [comments]

☎ Blockchain suPPort pHOne nuMBer ♨♛ +𝟏 𝟖𝟓𝟓☰𝟗𝟒𝟓☰𝟑𝟏𝟔𝟔 ♨♛ ✈ Blockchain customer helpline number ✥✥ORLANDO FLORIDA ✥✥

☎ Blockchain suPPort pHOne nuMBer ♨♛ +𝟏 𝟖𝟓𝟓☰𝟗𝟒𝟓☰𝟑𝟏𝟔𝟔 ♨♛ ✈ Blockchain customer helpline number ✥✥ORLANDO FLORIDA ✥✥
Blockchain is the most recent in the arrangement of advanced innovations that, due to their decentralized, even, dispersed and open source nature, are required to cause principal and enormous scope changes in how our present social, financial, political relations and foundations are composed. Around 20 years after the announcement of the autonomy of cyberspace1 and the crypto revolutionary manifesto,2 and 12 years after Yochai Benkler laid out how peer creation and web 2.0 would empower a bold new world,3 numerous presently accept blockchain will engage an open, decentralized, disintermediated, shrewd, trustless and cryptographic method of social organization.4 These expectations are mostly founded on the overall accomplishment of Bitcoin. Bitcoin utilizes dispersed record innovation (DLT) to monitor the flexibly and stream of the virtual badge of a money related instrument in a decentralized, disintermediated and evidently secure way. It is, in the expressions of its baffling creator(s), 'a distributed electronic money framework' and a progressing verification of concept.5 Even if Bitcoin neglects to build up itself as a steady standard cash, its fundamental mechanical plan permits people to namelessly (or if nothing else pseudonymously) trade badge of significant worth with one another in a sheltered and secure way, with little or in some cases no dependence on customary confided in mediators, as banks.6 The high perceivability of blockchain in the digital currency territory has provoked inescapable investigation of its application to different spaces, including copyright.
In its easiest depiction, a blockchain is a dispersed record, or an attach just information base, of which each client has a persistently refreshed legitimate duplicate. Any individual who approaches the record approaches a similar full exchange history and the capacity to confirm the legitimacy of all records.13 Sophisticated agreement instruments guarantee that new sections must be added to this dispersed information base on the off chance that they are steady with prior records. This dispersed information base has the ability to record any sorts of information. One can spare a self-assertive snippet of data on blockchain, which turns out to be important for the perpetual record. Records can likewise be utilized to monitor tokens having a place with explicit records (or 'wallets') and the time-stepped exchanges of tokens between accounts. All things considered, DLTs can guarantee that the exchanges are predictable after some time, and tokens are not spent twice. Contingent upon the real mechanical plan, a record holder can be an (mysterious/pseudonymous) individual, a legitimate element, a shrewd agreement (programming code), or any gathering or blend thereof. Tokens, as we show in the following segment, can speak to nearly anything: a unit of virtual money, a benefit, a physical item on the planet, or some other theoretical substance. Past these basic realities, diverse blockchains may follow various plans standards. As we clarify later, this in a general sense impacts their functioning.14
• Static and dynamic blockchain assessment; blockchain wrongdoing scene examination;
• Big data and the blockchain;
• Human–PC joint effort for blockchain applications;
• Blockchain and the Internet of things;
• Languages for insightful arrangement improvement;
• Blockchain-masterminded programming planning;
• Blockchain security and testing;
At this point, unmistakably if there is a grating, it isn't between a specific innovation and copyright. Or maybe, the erosion is between the social, monetary, and political conditions that created the blockchain innovation environment, from one viewpoint, and the social, financial, and political premises from which the current copyright framework created. Maybe abnormally, there is some theoretical arrangement—by all accounts, at any rate—between copyright's selectiveness shortage worldview and the eliteness shortage rationale of blockchains and keen agreements. Notwithstanding, when burrowing further, auxiliary incongruencies rise. Boss among them is the test of accommodating the hyper-fracture of copyright law with the generic, borderless, normalized, and robotized administrative arrangement offered by blockchain innovation.
submitted by Accomplished-Term806 to u/Accomplished-Term806 [link] [comments]

✘✘ Blockchain (support) Number 1850-945-3166 ⤃ Blockchain (support phone) Number ᕯNEWYORK NEWJERSEYᕯ

✘✘ Blockchain (support) Number 1850-945-3166 ⤃ Blockchain (support phone) Number ᕯNEWYORK NEWJERSEYᕯ
Blockchain is the most recent in the arrangement of advanced innovations that, due to their decentralized, even, dispersed and open source nature, are required to cause principal and enormous scope changes in how our present social, financial, political relations and foundations are composed. Around 20 years after the announcement of the autonomy of cyberspace1 and the crypto revolutionary manifesto,2 and 12 years after Yochai Benkler laid out how peer creation and web 2.0 would empower a bold new world,3 numerous presently accept blockchain will engage an open, decentralized, disintermediated, shrewd, trustless and cryptographic method of social organization.4 These expectations are mostly founded on the overall accomplishment of Bitcoin. Bitcoin utilizes dispersed record innovation (DLT) to monitor the flexibly and stream of the virtual badge of a money related instrument in a decentralized, disintermediated and evidently secure way. It is, in the expressions of its baffling creator(s), 'a distributed electronic money framework' and a progressing verification of concept.5 Even if Bitcoin neglects to build up itself as a steady standard cash, its fundamental mechanical plan permits people to namelessly (or if nothing else pseudonymously) trade badge of significant worth with one another in a sheltered and secure way, with little or in some cases no dependence on customary confided in mediators, as banks.6 The high perceivability of blockchain in the digital currency territory has provoked inescapable investigation of its application to different spaces, including copyright.
In its easiest depiction, a blockchain is a dispersed record, or an attach just information base, of which each client has a persistently refreshed legitimate duplicate. Any individual who approaches the record approaches a similar full exchange history and the capacity to confirm the legitimacy of all records.13 Sophisticated agreement instruments guarantee that new sections must be added to this dispersed information base on the off chance that they are steady with prior records. This dispersed information base has the ability to record any sorts of information. One can spare a self-assertive snippet of data on blockchain, which turns out to be important for the perpetual record. Records can likewise be utilized to monitor tokens having a place with explicit records (or 'wallets') and the time-stepped exchanges of tokens between accounts. All things considered, DLTs can guarantee that the exchanges are predictable after some time, and tokens are not spent twice. Contingent upon the real mechanical plan, a record holder can be an (mysterious/pseudonymous) individual, a legitimate element, a shrewd agreement (programming code), or any gathering or blend thereof. Tokens, as we show in the following segment, can speak to nearly anything: a unit of virtual money, a benefit, a physical item on the planet, or some other theoretical substance. Past these basic realities, diverse blockchains may follow various plans standards. As we clarify later, this in a general sense impacts their functioning.14
• Static and dynamic blockchain assessment; blockchain wrongdoing scene examination;
• Big data and the blockchain;
• Human–PC joint effort for blockchain applications;
• Blockchain and the Internet of things;
• Languages for insightful arrangement improvement;
• Blockchain-masterminded programming planning;
• Blockchain security and testing;
At this point, unmistakably if there is a grating, it isn't between a specific innovation and copyright. Or maybe, the erosion is between the social, monetary, and political conditions that created the blockchain innovation environment, from one viewpoint, and the social, financial, and political premises from which the current copyright framework created. Maybe abnormally, there is some theoretical arrangement—by all accounts, at any rate—between copyright's selectiveness shortage worldview and the eliteness shortage rationale of blockchains and keen agreements. Notwithstanding, when burrowing further, auxiliary incongruencies rise. Boss among them is the test of accommodating the hyper-fracture of copyright law with the generic, borderless, normalized, and robotized administrative arrangement offered by blockchain innovation.
submitted by Psychological-Toe387 to u/Psychological-Toe387 [link] [comments]

〈〈Blockchain hELp dESk numBEr〉〉 ①⑧⑤⑤-⑨④⑤-③①⑥⑥ Number ✴Blockchain Customer Helpline ✴USA CANADA $#[email protected]#&#@",>>✴

〈〈Blockchain hELp dESk numBEr〉〉 ①⑧⑤⑤-⑨④⑤-③①⑥⑥ Number ✴Blockchain Customer Helpline ✴USA CANADA $#[email protected]#&#@",>>✴
Blockchain is the most recent in the arrangement of advanced innovations that, due to their decentralized, even, dispersed and open source nature, are required to cause principal and enormous scope changes in how our present social, financial, political relations and foundations are composed. Around 20 years after the announcement of the autonomy of cyberspace1 and the crypto revolutionary manifesto,2 and 12 years after Yochai Benkler laid out how peer creation and web 2.0 would empower a bold new world,3 numerous presently accept blockchain will engage an open, decentralized, disintermediated, shrewd, trustless and cryptographic method of social organization.4 These expectations are mostly founded on the overall accomplishment of Bitcoin. Bitcoin utilizes dispersed record innovation (DLT) to monitor the flexibly and stream of the virtual badge of a money related instrument in a decentralized, disintermediated and evidently secure way. It is, in the expressions of its baffling creator(s), 'a distributed electronic money framework' and a progressing verification of concept.5 Even if Bitcoin neglects to build up itself as a steady standard cash, its fundamental mechanical plan permits people to namelessly (or if nothing else pseudonymously) trade badge of significant worth with one another in a sheltered and secure way, with little or in some cases no dependence on customary confided in mediators, as banks.6 The high perceivability of blockchain in the digital currency territory has provoked inescapable investigation of its application to different spaces, including copyright.
In its easiest depiction, a blockchain is a dispersed record, or an attach just information base, of which each client has a persistently refreshed legitimate duplicate. Any individual who approaches the record approaches a similar full exchange history and the capacity to confirm the legitimacy of all records.13 Sophisticated agreement instruments guarantee that new sections must be added to this dispersed information base on the off chance that they are steady with prior records. This dispersed information base has the ability to record any sorts of information. One can spare a self-assertive snippet of data on blockchain, which turns out to be important for the perpetual record. Records can likewise be utilized to monitor tokens having a place with explicit records (or 'wallets') and the time-stepped exchanges of tokens between accounts. All things considered, DLTs can guarantee that the exchanges are predictable after some time, and tokens are not spent twice. Contingent upon the real mechanical plan, a record holder can be an (mysterious/pseudonymous) individual, a legitimate element, a shrewd agreement (programming code), or any gathering or blend thereof. Tokens, as we show in the following segment, can speak to nearly anything: a unit of virtual money, a benefit, a physical item on the planet, or some other theoretical substance. Past these basic realities, diverse blockchains may follow various plans standards. As we clarify later, this in a general sense impacts their functioning.14
• Static and dynamic blockchain assessment; blockchain wrongdoing scene examination;
• Big data and the blockchain;
• Human–PC joint effort for blockchain applications;
• Blockchain and the Internet of things;
• Languages for insightful arrangement improvement;
• Blockchain-masterminded programming planning;
• Blockchain security and testing;
At this point, unmistakably if there is a grating, it isn't between a specific innovation and copyright. Or maybe, the erosion is between the social, monetary, and political conditions that created the blockchain innovation environment, from one viewpoint, and the social, financial, and political premises from which the current copyright framework created. Maybe abnormally, there is some theoretical arrangement—by all accounts, at any rate—between copyright's selectiveness shortage worldview and the eliteness shortage rationale of blockchains and keen agreements. Notwithstanding, when burrowing further, auxiliary incongruencies rise. Boss among them is the test of accommodating the hyper-fracture of copyright law with the generic, borderless, normalized, and robotized administrative arrangement offered by blockchain innovation.
submitted by OkCalligrapher3855 to u/OkCalligrapher3855 [link] [comments]

NEAR PROJECT REPORT

NEAR PROJECT REPORT
Author: Gamals Ahmed, CoinEx Business Ambassador
https://preview.redd.it/xbnvecjn71t51.png?width=1164&format=png&auto=webp&s=acfd141ead035ee156f218eec9fc41288142a922

ABSTRACT

The effects of the web by a number of companies have seduced a large number of users as these companies keep their data to prevent them from searching for alternatives. Likewise, these huge platforms have attracted applications to build their highest ecosystems before either severing access or actively opposing their interests when the applications became so successful. As a result, these walled gardens have effectively hindered innovation and monopolized large sections of the web. After the emergence of blockchain technology and decentralized cryptocurrencies, the need for applications to support decentralization has emerged. Several blockchain-based companies, applications and platforms have appeared in decentralization. In this research report, we will explain the approach adopted by the NEAR decentralization platform in designing and implementing the basic technology for its system. Near is a basic platform for cloud computing and decentralized storage managed by the community, designed to enable the open web for the future. On this web, everything can be created from new currencies to new applications to new industries, opening the door to an entirely new future.

1. INTRODUCTION

The richness of the web is increasing day by day with the combined efforts of millions of people who have benefited from “innovation without permission” as content and applications are created without asking anyone. this lack of freedom of data has led to an environment hostile to the interests of its participants. And as we explained in the summary previously, web hosting companies have hindered innovation and greatly monopolized the web.
In the future, we can fix this by using new technologies to re-enable the permissionless innovation of the past in a way, which creates a more open web where users are free and applications are supportive rather than adversarial to their interests.
Decentralization emerged after the global financial crisis in 2008, which created fundamental problems of confidence in the heavily indebted banking system. Then the decentralized financial sector based on Blockchain technology has emerged since 2009.
Decentralized Blockchain technology has made it easy for decentralized digital currencies like Bitcoin to exchange billions of dollars in peer-to-peer transfers for a fraction of the price of a traditional banking system. This technology allows participants in the over $ 50 billion virtual goods economy to track, own and trade in these commodities without permission. It allows real-world goods to cross into the digital domain, with verified ownership and tracking just like that of the digital.
By default, the Internet where freedom of data enables innovation will lead to the development of a new form of software development. On this web, developers can quickly create applications from open state components and boost their efforts by using new business models that are enabled from within the program itself rather than relying on parasitic relationships with their users. This not only accelerates the creation of applications that have a more honest and cooperative relationship with its users, but also allows the emergence of completely new business built on them.
To enable these new applications and the open web, it needs the appropriate infrastructure. The new web platform cannot be controlled by a single entity and its use is not limited due to insufficient scalability. It should be decentralized in design like the web itself and supported by a community of distributors widely so that the value they store cannot be monitored, modified or removed without permission from the users who store this value on their behalf.
A new decentralization technology (Blockchain), which has facilitated decentralized digital currencies like Bitcoin, has made billions of dollars in peer-to-peer transfers at a fraction of the price of the traditional banking system. This technology allows participants in the $ 50 billion + virtual goods economy to track, own and trade in these goods without permission. It allows real-world goods to cross into the digital domain, with verified ownership and tracking just like that of the digital.
Although the cost of storing data or performing a calculation on the Ethereum blockchain is thousands and millions of times higher than the cost of performing the same functionality on Amazon Web Services. A developer can always create a “central” app or even a central currency for a fraction of the cost of doing the same on a decentralized platform because a decentralized platform, by definition, will have many iterations in its operations and storage.
Bitcoin can be thought of as the first, very basic, version of this global community-run cloud, though it is primarily used only to store and move the Bitcoin digital currency.
Ethereum is the second and slightly more sophisticated version, which expanded the basic principles of Bitcoin to create a more general computing and storage platform, though it is a raw technology, which hasn’t achieved meaningful mainstream adoption.

1.1 WHY IS IT IMPORTANT TO PAY THE EXTRA COST TO SUPPORT DECENTRALIZATION?

Because some elements of value, for example bits representing digital currency ownership, personal identity, or asset notes, are very sensitive. While in the central system, the following players can change the value of any credits they come into direct contact with:
  1. The developer who controls the release or update of the application’s code
  2. The platform where the data is stored
  3. The servers which run the application’s code
Even if none of these players intend to operate with bad faith, the actions of governments, police forces and hackers can easily turn their hands against their users and censor, modify or steal the balances they are supposed to protect.
A typical user will trust a typical centralized application, despite its potential vulnerabilities, with everyday data and computation. Typically, only banks and governments are trusted sufficiently to maintain custody of the most sensitive information — balances of wealth and identity. But these entities are also subject to the very human forces of hubris, corruption and theft.
Especially after the 2008 global financial crisis, which demonstrated the fundamental problems of confidence in a highly indebted banking system. And governments around the
world apply significant capital controls to citizens during times of crisis. After these examples, it has become a truism that hackers now own most or all of your sensitive data.
These decentralized applications operate on a more complex infrastructure than today’s web but they have access to an instantaneous and global pool of currency, value and information that today’s web, where data is stored in the silos of individual corporations, cannot provide.

1.2 THE CHALLENGES OF CREATING A DECENTRALIZED CLOUD

A community-run system like this has very different challenges from centralized “cloud” infrastructure, which is running by a single entity or group of known entities. For example:
  1. It must be both inclusive to anyone and secure from manipulation or capture.
  2. Participants must be fairly compensated for their work while avoiding creating incentives for negligent or malicious behavior.
  3. It must be both game theoretically secure so good actors find the right equilibrium and resistant to manipulation so bad actors are actively prevented from negatively affecting the system.

2. NEAR

NEAR is a global community-run computing and storage cloud which is organized to be permissionless and which is economically incentivized to create a strong and decentralized data layer for the new web.
Essentially, it is a platform for running applications which have access to a shared — and secure — pool of money, identity and data which is owned by their users. More technically, it combines the features of partition-resistant networking, serverless compute and distributed storage into a new kind of platform.
NEAR is a community-managed, decentralized cloud storage and computing platform, designed to enable the open web in the future. It uses the same core technology for Bitcoin and Blockchain. On this web, everything can be created from new currencies to new applications to new industries, opening the door to an entirely new future.
NEAR is a decentralized community-run cloud computing and storage platform, which is designed to enable the open web of the future. On this web, everything from new currencies to new applications to new industries can be created, opening the door to a brand new future.
NEAR is a scalable computing and storage platform with the potential to change how systems are designed, how applications are built and how the web itself works.
It is a complex technology allow developers and entrepreneurs to easily and sustainably build applications which reap the benefits of decentralization and participate in the Open Web while minimizing the associated costs for end users.
NEAR creates the only community-managed cloud that is strong enough to power the future of the open web, as NEAR is designed from the ground up to deliver intuitive experiences to
end users, expand capacity across millions of devices, and provide developers with new and sustainable business models for their applications.
The NEAR Platform uses a token — also called “NEAR”. This token allows the users of these cloud resources, regardless of where they are in the world, to fairly compensate the providers of the services and to ensure that these participants operate in good faith.

2.1 WHY NEAR?

Through focus, we find that Platforms based on blockchain technologies like Bitcoin and Ethereum have made great progress and enriched the world with thousands of innovative applications spanning from games to decentralized financing.
However, these original networks and none of the networks that followed were not able to bridge the gap towards mainstream adoption of the applications created above them and do not provide this type of standard that fully supports the web.
This is a result of two key factors:
  1. System design
  2. Organization design
System design is relevant because the technical architecture of other platforms creates substantial problems with both usability and scalability which have made adoption nearly impossible by any but the most technical innovators. End-users experience 97–99% dropoff rates when using applications and developers find the process of creating and maintaining their applications endlessly frustrating.
Fixing these problems requires substantial and complex changes to current protocol architectures, something which existing organizations haven’t proven capable of implementing. Instead, they create multi-year backlogs of specification design and implementation, which result in their technology falling further and further behind.
NEAR’s platform and organization are architected specifically to solve the above-mentioned problems. The technical design is fanatically focused on creating the world’s most usable and scalable decentralized platform so global-scale applications can achieve real adoption. The organization and governance structure are designed to rapidly ship and continuously evolve the protocol so it will never become obsolete.

2.1.1 Features, which address these problems:

1. USABILITY FIRST
The most important problem that needs to be addressed is how to allow developers to create useful applications that users can use easily and that will capture the sustainable value of these developers.
2. End-User Usability
Developers will only build applications, which their end users can actually use. NEAR’s “progressive security” model allows developers to create experiences for their users which more closely resemble familiar web experiences by delaying onboarding, removing the need for user to learn “blockchain” concepts and limiting the number of permission-asking interactions the user must have to use the application.
1. Simple Onboarding: NEAR allows developers to take actions on behalf of their users, which allows them to onboard users without requiring these users to provide a wallet or interact with tokens immediately upon reaching an application. Because accounts keep track of application-specific keys, user accounts can also be used for the kind of “Single Sign On” (SSO) functionality that users are familiar with from the traditional web (eg “Login with Facebook/Google/Github/etc”).
2. Easy Subscriptions: Contract-based accounts allow for easy creation of subscriptions and custom permissioning for particular applications.
3. Familiar Usage Styles: The NEAR economic model allows developers to pay for usage on behalf of their users in order to hide the costs of infrastructure in a way that is in line with familiar web usage paradigms.
4. Predictable Pricing: NEAR prices transactions on the platform in simple terms, which allow end-users to experience predictable pricing and less cognitive load when using the platform.

2.1.2 Design principles and development NEAR’s platform

1. Usability: Applications deployed to the platform should be seamless to use for end users and seamless to create for developers. Wherever possible, the underlying technology itself should fade to the background or be hidden completely from end users. Wherever possible, developers should use familiar languages and patterns during the development process. Basic applications should be intuitive and simple to create while applications that are more robust should still be secure.
2. Scalability: The platform should scale with no upper limit as long as there is economic justification for doing so in order to support enterprise-grade, globally used applications.
3. Sustainable Decentralization: The platform should encourage significant decentralization in both the short term and the long term in order to properly secure the value it hosts. The platform — and community — should be widely and permissionlessly inclusive and actively encourage decentralization and participation. To maintain sustainability, both technological and community governance mechanisms should allow for practical iteration while avoiding capture by any single parties in the end.
4. Simplicity: The design of each of the system’s components should be as simple as possible in order to achieve their primary purpose. Optimize for simplicity, pragmatism and ease of understanding above theoretical perfection.

2.2 HOW NEAR WORKS?

NEAR’s platform provides a community-operated cloud infrastructure for deploying and running decentralized applications. It combines the features of a decentralized database with others of a serverless compute platform. The token, which allows this platform to run also, enables applications built on top of it to interact with each other in new ways. Together, these features allow developers to create censorship resistant back-ends for applications that deal with high stakes data like money, identity, assets, and open-state components, which interact seamlessly with each other. These application back-ends and components are called “smart contracts,” though we will often refer to these all as simply “applications” here.
The infrastructure, which makes up this cloud, is created from a potentially infinite number of “nodes” run by individuals around the world who offer portions of their CPU and hard drive space — whether on their laptops or more professionally deployed servers. Developers write smart contracts and deploy them to this cloud as if they were deploying to a single server, which is a process that feels very similar to how applications are deployed to existing centralized clouds.
Once the developer has deployed an application, called a “smart contract”, and marked it unchangeable (“immutable”), the application will now run for as long as at least a handful of members of the NEAR community continue to exist. When end users interact with that deployed application, they will generally do so through a familiar web or mobile interface just like any one of a million apps today.
In the central cloud hosted by some companies today like: Amazon or Google, developers pay for their apps every month based on the amount of usage needed, for example based on the number of requests created by users visiting their webpages. The NEAR platform similarly requires that either users or developers provide compensation for their usage to the community operators of this infrastructure. Like today’s cloud infrastructure, NEAR prices usage based on easy to understand metrics that aren’t heavily influenced by factors like system congestion. Such factors make it very complicated for developers on alternative blockchain-based systems today.
In the centralized cloud, the controlling corporation makes decisions unilaterally. NEAR community-run cloud is decentralized so updates must ultimately be accepted by a sufficient quorum of the network participants. Updates about its future are generated from the community and subject to an inclusive governance process, which balances efficiency and security.
In order to ensure that the operators of nodes — who are anonymous and potentially even malicious — run the code with good behavior, they participate in a staking process called “Proof of Stake”. In this process, they willingly put a portion of value at risk as a sort of deposit, which they will forfeit if it is proven that they have operated improperly.

2.2.1 Elements of the NEAR’s Platform

The NEAR platform is made up of many separate elements. Some of these are native to the platform itself while others are used in conjunction with or on top of it.
1. THE NEAR TOKEN
NEAR token is the fundamental native asset of the NEAR ecosystem and its functionality is enabled for all accounts. Each token is a unique digital asset similar to Ether, which can be used to:
a) Pay the system for processing transactions and storing data.
b) Run a validating node as part of the network by participating in the staking process.
c) Help determine how network resources are allocated and where its future technical direction will go by participating in governance processes.
The NEAR token enables the economic coordination of all participants who operate the network plus it enables new behaviors among the applications which are built on top of that network.
2. OTHER DIGITAL ASSETS
The platform is designed to easily store unique digital assets, which may include, but aren’t limited to:
  • Other Tokens: Tokens bridged from other chains (“wrapped”) or created atop the NEAR Platform can be easily stored and moved using the underlying platform. This allows many kinds of tokens to be used atop the platform to pay for goods and services. “Stablecoins,” specific kinds of token which are designed to match the price of another asset (like the US Dollar), are particularly useful for transacting on the network in this way.
  • Unique Digital Assets: Similar to tokens, digital assets (sometimes called “Non Fungible Tokens” (NFTs) ranging from in-game collectibles to representations of real-world asset ownership can be stored and moved using the platform.
3. THE NEAR PLATFORM
The core platform, which is made up of the cloud of community-operated nodes, is the most basic piece of infrastructure provided. Developers can permissionlessly deploy smart contracts to this cloud and users can permissionlessly use the applications they power. Applications, which could range from consumer-facing games to digital currencies, can store their state (data) securely on the platform. This is conceptually similar to the Ethereum platform.
Operations that require an account, network use, or storage at the top of the platform require payment to the platform in the form of transaction fees that the platform then distributes to its community from the authentication contract. These operations could include creating new accounts, publishing new contracts, implementing code by contract and storing or modifying data by contract.
As long as the rules of the protocol are followed, any independent developer can write software, which interfaces with it (for example, by submitting transactions, creating accounts or even running a new node client) without asking for anyone’s permission first.
4. THE NEAR DEVELOPMENT SUITE
Set of tools and reference implementations created to facilitate its use by those developers and end users who prefer them. These tools include:
  • NEAR SDKs: NEAR platform supports (Rust and AssemblyScript) languages to write smart contracts. To provide a great experience for developers, NEAR has a full SDK, which includes standard data structures, examples and testing tools for these two languages.
  • Gitpod for NEAR: NEAR uses existing technology Gitpod to create zero time onboarding experience for developers. Gitpod provides an online “Integrated Development Environment” (IDE), which NEAR customized to allow developers to easily write, test and deploy smart contracts from a web browser.
  • NEAR Wallet: A wallet is a basic place for developers and end users to store the assets they need to use the network. NEAR Wallet is a reference implementation that is intended to work seamlessly with the progressive security model that lets application developers design more effective user experiences. It will eventually include built-in functionality to easily enable participation by holders in staking and governance processes on the network.
  • NEAR Explorer: To aid with both debugging of contracts and the understanding of network performance, Explorer presents information from the blockchain in an easily digestible web-based format.
  • NEAR Command Line Tools: The NEAR team provides a set of straightforward command line tools to allow developers to easily create, test and deploy applications from their local environments.
All of these tools are being created in an open-source manner so they can be modified or deployed by anyone.

3. ECONOMIC

Primarily economic forces drive the ecosystem, which makes up the NEAR platform. This economy creates the incentives, which allow participants permissionlessly organize to drive the platform’s key functions while creating strong disincentives for undesirable, irresponsible or malicious behavior. In order for the platform to be effective, these incentives need to exist both in the short term and in the long term.
The NEAR platform is a market among participants interested in two aspects:
  • On the supply side, certification contract operators and other core infrastructure must be motivated to provide these services that make up the community cloud.
  • On the demand side, platform developers and end-users who pay for their use need to be able to do so in a simple, clear and consistent way that helps them.
Further, economic forces can also be applied to support the ecosystem as a whole. They can be used at a micro level to create new business models by directly compensating the developers who create its most useful applications. They can also be used at a macro level by coordinating the efforts of a broader set of ecosystem participants who participate in everything from education to governance.

3.1 NEAR ECONOMY DESIGN PRINCIPLES

NEAR’s overall system design principles are used to inform its economic design according to the following interpretations:
1. Usability: End users and developers should have predictable and consistent pricing for their usage of the network. Users should never lose data forever.
2. Scalability: The platform should scale at economically justified thresholds.
3. Simplicity: The design of each of the system’s components should be as simple as possible in order to achieve their primary purpose.
4. Sustainable Decentralization: The barrier for participation in the platform as a validating node should be set as low as possible in order to bring a wide range of participants. Over time, their participation should not drive wealth and control into the hands of a small number. Individual transactions made far in the future must be at least as secure as those made today in order to safeguard the value they modify.

3.2 ECONOMIC OVERVIEW

The NEAR economy is optimized to provide developers and end users with the easiest possible experience while still providing proper incentives for network security and ecosystem development.
Summary of the key ideas that drive the system:
  • Thresholded Proof of Stake: Validating node operators provide scarce and valuable compute resources to the network. In order to ensure that the computations they run are correct, they are required to “stake” NEAR tokens, which guarantee their results. If these results are found to be inaccurate, the staker loses their tokens. This is a fundamental mechanism for securing the network. The threshold for participating in the system is set algorithmically at the lowest level possible to allow for the broadest possible participation of validating nodes in a given “epoch” period (½ of a day).
  • Epoch Rewards: Node operators are paid for their service a fixed percentage of total supply as a “security” fee of roughly 4.5% annualized. This rate targets sufficient participation levels among stakers in order to secure the network while balancing with other usage of NEAR token in the ecosystem.
  • Protocol treasury: In addition to validators, protocol treasury received a 0.5% of total supply annually to continuously re-invest into ecosystem development.
  • Transaction Costs: Usage of the network consumes two separate kinds of resources — instantaneous and long term. Instantaneous costs are generated by every transaction because each transaction requires the usage of both the network itself and some of its computation resources. These are priced together as a mostly-predictable cost per transaction, which is paid in NEAR tokens.
  • Storage Costs: Storage is a long term cost because storing data represents an ongoing burden to the nodes of the network. Storage costs are covered by maintaining minimum balance of NEAR tokens on the account or contract. This provides indirect mechanism of payment via inflation to validators for maintaining contract and account state on their nodes.
  • Inflation: Inflation is determined as combination of payouts to validators and protocol treasury minus the collected transaction fees and few other NEAR burning mechanics (like name auction). Overall the maximum inflation is 5%, which can go down over time as network gets more usage and more transactions fees are burned. It’s possible that inflation becomes negative (total supply decreases) if there is enough fees burned.
  • Scaling Thresholds: In a network, which scales its capacity relative to the amount of usage it receives, the thresholds, which drive the network to bring on additional capacity are economic in nature.
  • Security Thresholds: Some thresholds, which provide for good behavior among participants are set using economic incentives. For example, “Fishermen” (described separately).
Full Report
submitted by CoinEx_Institution to Coinex [link] [comments]

What is a Bitcoin Wallet? Bitcoin wallet basics - YouTube Bitcoin Wallet Recovery Bitcoin and the Dark Web - YouTube Is This The Best Cryptocurrency Wallet? How To Mine 1 Bitcoin in 10 Minutes - Blockchain BTC Miner ...

Bio Naturals. 's best boards. Bitcoins. Bio Naturals • 1 Pin • 1 Pin While bitcoin and other cryptocurrencies tend to be speculative investments that people hold, buy and sell to build a diversified portfolio, it’s also becoming increasingly possible to spend bitcoin on everyday things.. Convert your coins to cash via ATMs. See our map above and the searchable list at the end of this article. As a reference, Coinsource is one cryptocurrency ATM operator in ... Bitcoin Stock Chart Ytd Open Source Bitcoin Bitcoins Original Price Bitcoin Stock Chart Ytd Best Bitcoin Wallet Iphone Current Bitcoin Price Usd Bitcoin Value Highest ... Cryptocurrency News & Your Guide to the Blockchain Economy. All content on Blockonomi.com is provided solely for informational purposes, and is not an offer to buy or sell or a solicitation of an offer to buy or sell any security, product, service or investment. While bitcoin and other cryptocurrencies are speculative investments that people hold, buy and sell to build a diversified portfolio, it’s becoming increasingly more useful in the real world.. US cities where you can spend bitcoin and find bitcoin ATMs. DID YOU KNOW. Services like ShapeShift and Changelly can make it more convenient to exchange one cryptocurrency for another (crypto-to ...

[index] [41785] [12686] [37476] [49435] [31435] [29043] [31255] [24912] [35424] [11769]

What is a Bitcoin Wallet? Bitcoin wallet basics - YouTube

How to Setup a Bitcoin Wallet- https://bit.ly/mydigitalfinance Hi guys you've landed on this video because you searched for how to setup a bitcoin wallet. In... Bitcoin is the preferred form of payments on the Dark Web. After this lecture you should understand why. In this video from www.secureyourwallet.com, we go through the basics of "what is a Bitcoin Wallet?", "How do I get a Bitcoin Wallet?" and "How do I use a Bi... 01:07 Evolution of web browsers 02:53 A good wallet should hide the difference between Bitcoin and Lightning How will Lightning mass adoption happen? Adoption depends a lot on how well built and ... What it really takes to mine a Bitcoin in 10 Minutes. Firstly I'll show you a special free method to mine Bitcoin and send funds directly to your wallet in 1...

#